Динамическое программирование. Рекуррентные соотношения с одним и двумя параметрами

Рекуррентные соотношения с 2 параметрами. Задача о блоке.

Задача 1. В таблице размера m·n, с элементами 0 и 1 найти квадратный блок максимального размера, состоящий из одних единиц. При m= 5, n= 6 искомый блок выделен цветом.

1	1	0	1	0	1
1	1	1	1	1	0
1	0	1	1	1	1
1	1	1	1	1	1
1	0	1	1	0	1

Положение любого квадратного блока определяется его размером и положением нижней правой вершины. Максимальный размер блока max = 3, координаты правого нижнего угла: b = 4, c = 5.

Решение задачи о блоке из единиц

Пусть Т[i,j] — функция, значение которой равно размеру максимального квадратного блока из единиц, правый нижний угол которого расположен в позиции (i,j). Значения ее в 1 строке и 1 столбце совпадают с элементами а[1,j] и а[i,1]:

1	1	0	1	0	1
1	2	1	1	1	0
1	0	1	2	2	1
1	1	1	2	3	2
1	0	1	2	0	1

Т[1,j] = a[1,j], Т[i,1] = a[i,1].
При i >1, j > 1 для функции Т
выполняются рекуррентные соотношения:
Т[i,j] = 0, если A[i,j] = 0,
Т[i,j] = min(T[i-1,j],T[i,j-1],T[i-1,j-1]) +1
при A[i,j] = 1.
Для приведенного примера слева составлена таблица значений Т[i,j].

Задача о рюкзаке

Задача.

На складе имеется п неделимых предметов. Для каждого предмета известна его масса m[i] (кг) и стоимость c[i] (ус. ед.).

Определить максимальную суммарную стоимость предметов, которые можно унести со склада, при условии, что суммарная

масса предметов не должна превышать p = 15 кг.

m[i]	4	5	3	7	6
c[i]	5	7	4	9	8

Задача о рюкзаке

Задача. На складе имеется п неделимых предметов. Для каж предмета известна его масса m[i] (кг) и стоимость c[i] (ус. ед.).

m[i]	4	5	3	7	6	
c[i]	5	7	4	9	8	

n = 5.

Определить максимальную суммарную стоимость предметов, которые можно унести со склада, при условии, что суммарная масса предметов не должна превышать $p = 15 \ \mathrm{kr}$.

Решение. Пусть T[i,j] – функция, значения которой равны суммарной стоимости унесенных предметов, при условии, что выбираются предметы из первых і предметов, ј – максимально возможная их масса. Решению задачи соответствует Т[5, 15].

Решение задачи о рюкзаке

Для задачи T(n,p) определим подзадачи T(i,j), i – количество начальных предметов, из которых делается выбор, j - максимум возможной суммарной массы уносимых предметов. Аргумент i задает количество предметов для подзадачи.

Найдем рекуррентные соотношения для вычисления функции Т: T(0,0) = 0, T(0,j) = 0 при $j \ge 1$, T(i,0) = 0 при $i \ge 1$.

Если предмет с номером і остается на складе, то T(i,j)=T(i-1,j). Если предмет с номером і уносится со склада, то это уменьшает возможную суммарную массу для i-1 первых предметов на m[i], увеличивая значение решения на c[i]: T(i,j)=T(i-1,j-m[i]+c[i]. Этот вариант возможен, если $m[i] \le j$. Из двух вариантов

выбираем лучший.

Решение задачи о рюкзаке

Таким образом, при і≥1, ј≥1 соотношение имеет вид:

T(i,j)=T(i-1,j) при j < m[i],

 $T(i,j)= \max(T(i-1,j), T(i-1,j-m[i]) + c[i])$ при $m[i] \leq j$. T(5,15) = 20

j i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	5	5	5	5	5	5	5	5	5	5	5	5
2	0	0	0	0	5	7	7	7	7	12	12	12	12	12	12	12
3	0	0	0	4	5	7	7	9	11	12	12	12	16	16	16	16
4	0	0	0	4	5	7_	7	9	11	12	12	14	16	16	18	20
5	0	0	0	4	5	7	8	9	11	12(13	15	16	17	19	20

Построение списка уносимых предмето

Список уносимых со склада предметов будем формировать "с конца". Рассмотрим элементы таблицы функции Т(5, 15) и T(4, 15). Так как значения обоих этих элементов равны 20, то это значит, что можно набрать стоимость 20 ед. пятого предмета, используя в списке только предметы с номерами 1-4, т.е. пятый предмет в список не включаем. Теперь рассмотрим элементы T(4, 15) и T(3, 15). Их значения не равны, $16 \neq 20$. Это означает, что четвертый предмет должен быть обязательно включен в список уносимых предметов, а масса других предметов списка должна быть не больше 15 - m[4] = 15 - 7 = 8 (кг.).

Построение списка уносимых предметов

- Далее рассмотрим элементы T(3, 8) и T(2, 8). Их значения не равны, $11 \neq 7$, значит, третий предмет включается в список, а масса других предметов списка должна быть не больше 8 m[3] = 8 3 = 5 (кг.).
- Теперь рассмотрим элементы T(2, 5) и T(1, 5). Их значения не равны, 7 ≠ 5, значит второй предмет включается в список. Так как его масса равна 5 (кг.), то первый предмет не может включаться в список.
- Таким образом, в искомый список входят предметы с номерами 2, 3, и 4.

