	[image: Gerb-BMSTU_01]
	Министерство образования и науки Российской Федерации
Федеральное государственное автономное образовательное учреждение высшего образования
«Московский государственный технический университет
имени Н.Э. Баумана
(национальный исследовательский университет)»
(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ»

ОТЧЕТ ПО ТЕХНОЛОГИЧЕСКОЙ ПРАКТИКЕ

Студент ______________________________
фамилия, имя, отчество
Группа ИУ5-____

Тип практики - учебная

Название предприятия - НУК ИУ,
Московский государственный технический университет им. Н.Э. Баумана

Студент						_________________ 	_____________.
						 подпись, дата фамилия, и.о.
Руководитель практики				_________________ 	Черненький М.В.
						 подпись, дата фамилия, и.о.

Оценка __________________________________

2025 г.

ЗАДАНИЕ

В цифровую эпоху, где данные стали новой "нефтью", движущей силой инноваций и принятия решений, существует фундаментальный инструмент, без которого немыслима работа с информационными массивами.
Язык структурированных запросов (SQL - Structured Query Query Language) - это не просто технология; это универсальный ключ к миру реляционных баз данных, остающийся бессменным стандартом на протяжении десятилетий. Возникнув в недрах IBM в 1970-х годах как скромный интерфейс для управления данными в системе System R, SQL прошел путь от узкоспециализированного инструмента до краеугольного камня современной информационной инфраструктуры. Его декларативная природа ("что нужно получить", а не "как это сделать") и мощные возможности по манипуляции данными сделали его незаменимым для разработчиков, аналитиков, администраторов баз данных и бизнес-пользователей по всему миру.
От гигантских корпоративных систем до мобильных приложений на нашем смартфоне - SQL является той "кровеносной системой", которая позволяет извлекать смысл из неструктурированного хаоса битов и байтов. В этом отчете приведены причины повсеместного распространения, рассмотрены его основные принципы и ключевые возможности от простого SELECT до сложных аналитических функций, а также показана его роль и перспективы в стремительно меняющемся ландшафте технологий больших данных и облачных вычислений.
Несмотря на появление новых парадигм и инструментов, SQL продолжает доказывать, что практическая эффективность и надежность в управлении данными важны для всех поколений информационных систем.

1. Фундаментальные принципы и базовые операции SQL

1.1 Реляционная модель в таблицах

Концепция, предложенная Эдгаром Коддом в 1970 году, стала основой для SQL. Данные в реляционной базе представляются в виде таблиц (relations), каждая из которых соответствует сущности предметной области (например, Клиенты, Заказы, Товары). Каждая таблица обладает следующими ключевыми атрибутами:

Столбцы (Атрибуты/Поля): Определяют характеристики сущности (например, CustomerID, Name, Email в таблице Клиенты). Каждый столбец имеет строго определенный тип данных (INTEGER для целых чисел, VARCHAR(n) для строк переменной длины, DATE для дат, DECIMAL для точных чисел и т.д.), обеспечивая целостность хранимой информации.

Строки (Кортежи/Записи): Представляют конкретные экземпляры сущности (например, один клиент со своим уникальным ID, именем и email).

Первичный Ключ (Primary Key): Один или несколько столбцов, уникально идентифицирующих каждую строку в таблице (например, CustomerID). Значения первичного ключа не могут быть NULL (пустыми) и не могут повторяться.

Внешний Ключ (Foreign Key): Столбец (или набор столбцов) в одной таблице, который ссылается на первичный ключ другой таблицы. Это создает связи между таблицами (например, столбец CustomerID в таблице Заказы ссылается на CustomerID в таблице Клиенты), обеспечивая ссылочную целостность данных – нельзя создать заказ для несуществующего клиента.

Эта табличная организация делает данные структурированными, предсказуемыми и пригодными для эффективного поиска и манипуляций с помощью операций реляционной алгебры (объединение, пересечение, разность, проекция, выборка, соединение), которые лежат в основе SQL-запросов.

1.2 Декларативность: говорим "Что", а не "Как"

Одно из самых революционных преимуществ SQL – его декларативная природа. В отличие от императивных языков программирования (C++, Python, Java), где разработчик детально описывает шаги для достижения результата, в SQL пользователь формулирует что именно он хочет получить из базы данных. Система управления базами данных (СУБД) сама определяет наиболее эффективный способ (план выполнения запроса) найти и обработать запрошенные данные.
Например, в парадигме императивного представления (псевдокод): "Перебрать всех клиентов. Для каждого клиента проверить, живет ли он в городе 'Москва'. Если да, добавить его имя в результирующий список. Отсортировать список по имени."

Декларативно (SQL):
SELECT Name
FROM Customers
WHERE City = 'Москва'
ORDER BY Name;

SQL-запрос ясно указывает: выбери (SELECT) столбец Name из таблицы (FROM) Customers только для тех строк, где (WHERE) City равен 'Москва', и отсортируй результат (ORDER BY) по столбцу Name. Как именно СУБД пройдет по индексам или таблицам, чтобы выполнить этот запрос максимально быстро – задача оптимизатора запросов, скрытая от пользователя. Этот подход делает SQL мощным и относительно простым для изучения базовых операций.

1.3 Ядро взаимодействия: CRUD и базовые операции

Подавляющее большинство задач по работе с данными сводится к четырем фундаментальным операциям, часто обозначаемым акронимом CRUD:
SELECT – Чтение (Retrieve): Самая часто используемая операция. Предназначена для извлечения данных из одной или нескольких таблиц.

Базовый синтаксис:
SELECT column1, column2, ...
FROM table_name
[WHERE condition]
[ORDER BY column(s) [ASC|DESC]];

Ключевые элементы:
SELECT *: Выбрать все столбцы.

WHERE: Фильтрация строк по условию (например, WHERE Age > 30, WHERE Status = 'Active'). Использует операторы сравнения (=, <>, >, <, >=, <=), логические операторы (AND, OR, NOT).

ORDER BY: Сортировка результата по указанным столбцам (по умолчанию ASC - по возрастанию, DESC - по убыванию).

DISTINCT: Удаление дубликатов строк из результата (например, SELECT DISTINCT City FROM Customers).

INSERT – Создание (Create): Добавление новых строк (записей) в таблицу.

Базовый синтаксис:
INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);

Важно: Количество и порядок столбцов должны соответствовать количеству и порядку значений. Значения должны соответствовать типам данных столбцов. Можно опустить список столбцов, если указываете значения для всех столбцов в правильном порядке: INSERT INTO table_name VALUES (value1, value2, ...);.

UPDATE – Обновление (Update): Изменение существующих данных в строках таблицы.

Базовый синтаксис:
UPDATE table_name
SET column1 = value1, column2 = value2, ...
[WHERE condition];

Критически важно: Всегда использовать WHERE для указания какие именно строки нужно обновить. Отсутствие WHERE приведет к обновлению всех строк в таблице! (Например, UPDATE Customers SET Discount = 0.1 WHERE CustomerID = 123;).

DELETE – Удаление (Delete): Удаление существующих строк из таблицы.

Базовый синтаксис:
DELETE FROM table_name
[WHERE condition];

Критически важно: Как и в UPDATE, всегда используйте WHERE, чтобы указать какие именно строки нужно удалить. Отсутствие WHERE приведет к удалению всех строк в таблице! (Например, DELETE FROM Orders WHERE OrderDate < '2023-01-01';). Удаление данных – операция, требующая особой осторожности.

1.4 Определение структуры: начало начал (DDL - Data Definition Language)

Перед тем как манипулировать данными (CRUD, относящийся к DML - Data Manipulation Language), необходимо определить саму структуру их хранения. Этим занимается подмножество SQL – DDL (Data Definition Language). Его основные команды:
CREATE TABLE: Создает новую таблицу с указанным именем и набором столбцов с их типами данных.

CREATE TABLE Employees (
 EmployeeID INT PRIMARY KEY,
 FirstName VARCHAR(50) NOT NULL,
 LastName VARCHAR(50) NOT NULL,
 BirthDate DATE,
 HireDate DATE NOT NULL
);
ALTER TABLE: Изменяет существующую таблицу (добавляет/удаляет/изменяет столбцы, добавляет/удаляет ограничения).

ALTER TABLE Employees ADD COLUMN Email VARCHAR(100);
ALTER TABLE Employees DROP COLUMN BirthDate;

DROP TABLE: Полностью удаляет таблицу и все ее данные из базы.

DROP TABLE TemporaryData;

CREATE INDEX: Создает индекс на одном или нескольких столбцах для значительного ускорения операций поиска и сортировки (особенно SELECT с WHERE и ORDER BY), за счет небольшого замедления операций INSERT/UPDATE/DELETE (т.к. нужно обновлять и индекс).

CREATE INDEX idx_lastname ON Employees (LastName);

2. Мощь манипуляции данными: агрегация, соединения и фильтрация

2.1 Агрегация: от деталей к общей картине

Часто ценность представляет не каждая отдельная запись, а сводная информация по группам данных. SQL предоставляет набор агрегатных функций, которые выполняют вычисления над набором строк и возвращают единственное значение.

Основные агрегатные функции:
COUNT(): Подсчитывает количество строк (или ненулевых значений в столбце). COUNT(*) считает все строки.

SUM(): Вычисляет сумму значений в столбце (только для числовых типов).
AVG(): Вычисляет среднее арифметическое значений в столбце (числовые типы).
MIN(): Находит минимальное значение в столбце.
MAX(): Находит максимальное значение в столбце.

Группировка данных (GROUP BY): Ключевое слово GROUP BY позволяет разделить результирующий набор строк на группы, к которым затем применяются агрегатные функции. Это основа для получения статистики по категориям.

Пример: Количество заказов и общая сумма продаж по каждому городу клиента
SELECT
 c.City,
 COUNT(o.OrderID) AS TotalOrders, -- Агрегация по группе
 SUM(od.Quantity * od.UnitPrice) AS TotalSales -- Сложная агрегация
FROM Customers c
JOIN Orders o ON c.CustomerID = o.CustomerID
JOIN OrderDetails od ON o.OrderID = od.OrderID
GROUP BY c.City; -- Группировка по городу

Фильтрация агрегированных данных (HAVING): Ключевое слово HAVING используется для фильтрации результатов после группировки и агрегации, в отличие от WHERE, который фильтрует строки до группировки. HAVING работает с результатами агрегатных функций.

Важно: WHERE фильтрует исходные строки, GROUP BY группирует отфильтрованные строки, агрегатные функции вычисляются для групп, HAVING фильтрует получившиеся группы по результатам агрегации.

2.2 Соединения (JOIN): собираем мозаику из разных таблиц

Суть реляционной модели – хранение данных в нормализованном виде (без избыточности) в множестве связанных таблиц. JOIN – это фундаментальная операция SQL, позволяющая комбинировать строки из двух или более таблиц на основе логической связи между ними (обычно через совпадение значений в связанных столбцах – первичных и внешних ключах).

Типы соединений

INNER JOIN (Внутреннее соединение): Возвращает только те строки, где есть совпадение по условию соединения в обеих таблицах. Самый распространенный тип.

Клиенты и их заказы (только клиенты, сделавшие хотя бы один заказ)
SELECT c.CustomerName, o.OrderID, o.OrderDate
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID;
LEFT JOIN (Левое внешнее соединение): Возвращает ВСЕ строки из левой (первой) таблицы и соответствующие строки из правой таблицы. Если соответствия нет, в столбцах правой таблицы будут значения NULL.

Все клиенты и их заказы (включая клиентов без заказов)
SELECT c.CustomerName, o.OrderID, o.OrderDate
FROM Customers c
LEFT JOIN Orders o ON c.CustomerID = o.CustomerID;
RIGHT JOIN (Правое внешнее соединение): Возвращает ВСЕ строки из правой (второй) таблицы и соответствующие строки из левой таблицы. Если соответствия нет, в столбцах левой таблицы будут значения NULL. (Используется реже LEFT JOIN, часто его можно переписать как LEFT JOIN, поменяв таблицы местами).

FULL OUTER JOIN (Полное внешнее соединение): Возвращает ВСЕ строки из обеих таблиц. Если для строки из одной таблицы нет соответствия в другой, недостающие столбцы заполняются NULL. (Менее распространен, поддерживается не всеми СУБД).
CROSS JOIN (Перекрестное соединение / Декартово произведение): Возвращает все возможные комбинации строк из обеих таблиц. Количество строк = (число строк в табл.1) * (число строк в табл.2). Полезен в специфических сценариях (например, генерация всех возможных пар), но требует крайней осторожности из-за потенциально огромного результата. Часто является результатом ошибки (забыто условие ON в INNER JOIN).

Множественные соединения: Запросы могут соединять множество таблиц последовательно.

Клиенты, их заказы и детали заказов (продукты)
SELECT c.CustomerName, o.OrderDate, p.ProductName, od.Quantity
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN OrderDetails od ON o.OrderID = od.OrderID
INNER JOIN Products p ON od.ProductID = p.ProductID;
Соединение таблицы с самой собой (Self Join): Полезно, когда данные в одной таблице ссылаются на другие данные в этой же таблице (например, иерархия сотрудников).

Сотрудники и их менеджеры (из той же таблицы Employees)
SELECT e1.EmployeeName AS Employee, e2.EmployeeName AS Manager
FROM Employees e1
LEFT JOIN Employees e2 ON e1.ManagerID = e2.EmployeeID; -- Менеджер тоже сотрудник
Важность условий соединения (ON): Точное указание условия соединения (ON c.CustomerID = o.CustomerID) критически важно для корректности (чтобы соединялись действительно связанные данные) и эффективности (чтобы СУБД могла использовать индексы). Ошибка в условии ON – частая причина неверных или избыточных данных в результате.

2.3 Продвинутая фильтрация: точность выбора

Помимо простых условий WHERE (=, >, <, AND, OR), SQL предлагает мощные инструменты для сложной фильтрации данных:

Подзапросы (Subqueries): Запрос, вложенный внутрь другого запроса (обычно в WHERE, FROM или SELECT). Может возвращать скалярное значение, список значений или целую таблицу.

В WHERE (с операторами IN, NOT IN, EXISTS, ANY, ALL):
Клиенты, которые делали заказы в 2024 году (подзапрос возвращает список ID)
SELECT CustomerName
FROM Customers
WHERE CustomerID IN (
 SELECT DISTINCT CustomerID
 FROM Orders
 WHERE OrderDate BETWEEN '2024-01-01' AND '2024-12-31'
);
Товары, цена которых выше средней цены всех товаров (подзапрос возвращает одно число)
SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice > (SELECT AVG(UnitPrice) FROM Products);
Коррелированные подзапросы: Подзапрос, который ссылается на столбцы внешнего запроса. Выполняется для каждой строки внешнего запроса (может быть неэффективен).

Заказы, сумма которых выше среднего чека по их клиенту
SELECT o.OrderID, o.CustomerID, o.TotalAmount
FROM Orders o
WHERE o.TotalAmount > (
 SELECT AVG(TotalAmount)
 FROM Orders o_inner
 WHERE o_inner.CustomerID = o.CustomerID -- Ссылается на внешний CustomerID
);
Подзапросы в FROM (Производные таблицы): Результат подзапроса используется как временная таблица в основном запросе.

sql
-- Среднее количество товаров в заказе по городу клиента
SELECT c.City, AVG(OrderItemCount) AS AvgItemsPerOrder
FROM Customers c
JOIN (
 SELECT o.CustomerID, COUNT(od.OrderDetailID) AS OrderItemCount
 FROM Orders o
 JOIN OrderDetails od ON o.OrderID = od.OrderID
 GROUP BY o.CustomerID
) AS OrderItems ON c.CustomerID = OrderItems.CustomerID
GROUP BY c.City;
Объединение результатов (UNION, UNION ALL, INTERSECT, EXCEPT): Комбинирование результирующих наборов нескольких SELECT-запросов по вертикали (одинаковое количество и типы столбцов).

UNION: Объединяет результаты, удаляя дубликаты.
UNION ALL: Объединяет результаты, сохраняя все дубликаты (быстрее UNION, если дубли не важны).
INTERSECT: Возвращает только общие строки, присутствующие в результатах обоих запросов.
EXCEPT (или MINUS в некоторых СУБД): Возвращает строки из первого запроса, которых нет во втором запросе.

Заключение

SQL – это не просто язык запросов, переживший десятилетия. Это феномен. Его ядро, основанное на строгой математической модели и декларативном принципе, доказало свою неподвластную времени эффективность и универсальность. Он эволюционирует, поглощая новые вызовы – большие данные, облачные вычисления, новые типы данных – и расширяя свою функциональность, но его фундаментальные принципы работы с реляционными данными остаются незыблемыми.

Знание рассмотренных основ – это ключ к данным. Однако истинное мастерство заключается в понимании всего спектра его возможностей – от обеспечения железобетонной надежности транзакций до написания высокоэффективных аналитических запросов с оконными функциями и грамотного управления безопасностью и производительностью. SQL продолжает быть "кровеносной системой" данных, и его изучение – это не пункт назначения, а увлекательное, непрерывное путешествие. Мир данных огромен, и SQL в своем постоянном развитии остается одним из самых надежных и мощных проводников по его просторам.

Список использованных источников

1. https://iu5.bmstu.ru
2. https://data.gov.ru/
3. https://data.world/
4. https://ru.ruwiki.ru/
5. https://practicum.yandex.ru/
6. https://python.org
[bookmark: _GoBack]
image1.jpeg

