

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

иональный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика, системы управления и искусственный интеллект
	V • V
КАФЕДРА	Системы обработки информации и управления

Методические указания к лабораторным работам по курсу «Сетевая безопасность»

Лабораторная работа №2

Разработал: Старший преподаватель Антонов А.И.

Содержание

Цель работы	3
Теоретическая часть	3
Хеширование	
PPP	
IPsec	5
Залание	7

Цель работы

Изучить протоколы защиты данных в Cisco Packet Tracer на примере PPP и IPsec.

Теоретическая часть

Хеширование

Хеш-функция - функция, осуществляющая преобразование массива входных данных произвольной длины в выходную битовую строку установленной длины. Преобразование, производимое хеш-функцией, называется хешированием. Для защиты информации чаще всего используются криптографические хеш-функции, которые отличаются необратимостью и защищенностью от коллизий.

PPP

PPP (Point-to-Point-Protocol) - протокол второго уровня модели OSI. Обычно используется для установления прямой связи между двумя узлами сети. Обеспечивает аутентификацию соединения, шифрование и сжатие данных.

В сетевом оборудовании от Cisco PPP включается так:

Router(config)#int serial1/0
Router(config-if)#encapsulation ppp

Наиболее распространенные алгоритмы аутентификации - PAP и CHAP. PAP (password authentication protocol) считается устаревшим и небезопасным, т.к. отправляет пароли в чистом виде, из-за чего их легко проверять. CHAP (challenge handshake authentication protocol) не передает пароль в открытом виде, вместо этого он использует трехэтапное согласование:

- 1. Сторона отправляет пакет типа challenge с числом.
- 2. Другая сторона объединяет число из пакета и свой секрет, вычисляет и отправляет хеш.
- 3. Хеш принимается первой стороной и сравнивается с ожидаемым значением. Если оно совпадает, то аутентификация пройдена.

Если перехватить challenge пакет и пакет с ответом на него, то можно перебирать пароль по словарю или полным перебором пока хеш не совпадет.

Для настройки СНАР необходимо задать имя хоста на обоих маршрутизаторах и создать пользователей для маршрутизатора на другом конце. Предположим, что настраивается PPP между RouterA и RouterB, тогда настройка RouterA будет выглядеть так:

Router1(config)#hostname RouterA
RouterA(config)#username RouterB secret <пароль>

Аналогичную процедуру необходимо провести на RouterB. Имена хостов должны отличаться, а пароль совпадать.

IPsec

IPsec - набор протоколов для обеспечения защиты данных. Позволяет осуществлять аутентификацию, проверку целостности и шифрование IP-пакетов. IPsec также включает в себя протоколы для защищённого обмена ключами в сети Интернет. В основном применяется для организации VPN-соединений. IPsec реализован на сетевом (3-м) уровне.

Для настройки IPsec сначала необходимо настроить ISAKMP - протокол из набора IPsec для аутентификации и обмена ключами:

Router(config)#crypto isakmp policy 10

Router(config-isakmp)#encryption aes 256

Router(config-isakmp)#authentication pre-share

Router(config-isakmp)#group 5

Router(config-isakmp)#exit

Router(config)#crypto isakmp key <пароль> address <адрес внешнего интерфейса другой стороны туннеля>

Далее необходимо задать, что будет использоваться ESP (encapsulating security payload) - протокол, обеспечивающий шифрование данных, проверку целостности, аутентификацию источника, а также защиту от повторной передачи:

Router(config)#crypto ipsec transform-set set1 esp-aes 256 esp-sha-hmac

Здесь и на прошлом шаге задаются: алгоритм шифрования (AES-256), эллиптическая кривая (группа 5), алгоритм аутентификации (HMAC на базе хеша SHA).

После этого необходимо создать ACL, разрешающий перенаправление трафика между сетями, между которыми будет развернут туннель:

Router(config)#access-list 100 permit ip <ceть 1> <обратная маска 1> <ceть 2> <обратная маска 2>

Например для соединения сетей 192.168.1.0/24 и 192.168.2.0/24 для маршрутизатора в сети 192.168.1.0/24 правило будет выглядеть так:

Router(config)#access-list 100 permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255

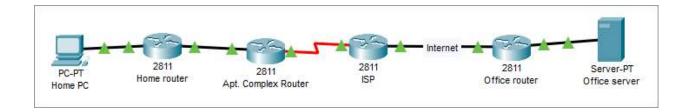
В конце необходимо создать криптокарту IPsec:

Router(config)#crypto map IPSec 100 ipsec-isakmp

Router(config-crypto-map)#set peer <адрес внешнего интерфейса другой стороны туннеля>

Router(config-crypto-map)#set pfs group5

Router(config-crypto-map)#set security-association lifetime seconds 86400


Router(config-crypto-map)#set transform-set set1

Router(config-crypto-map)#match address 100

И включить IPsec на внешнем интерфейсе:

Router(config)#int fa0/0
Router(config-if)#crypto map IPSec

Задание

Адреса подсетей должны содержать номер группы и порядковый номер студента в группе.

- 1. Построить сеть
- 2. Настроить PPP с аутентификацией CHAP между Apt. Complex Router и ISP
- 3. Настроить шлюзы по умолчанию и маршрутизацию всех сетей кроме сети за Home router и сети за Office router
- 4. Настроить IPsec туннель между Home router и Office router
- 5. Продемонстрировать доступ к серверу Office server с компьютера Home PC