MpaKkTnyeckas pabota
MposeaeHWe 3KCNEPUMEHTOB C UMUTALMOHHON MOAEbIO
B cpene Python / Simpy / Scipy / Streamlit

Brubnnoteka Simpy obecneymBaeT NoAAEpPKKY ONMCaAHMA U 3aMycKa AUCKPETHO-COObLITUIHLIX MoAenei Ha
Python. B 6ubnnoteke Simpy HeT NosiHOUEHHOM rpaduyeckoi cpeapl ANA MOCTPOEHUA, BbINOJIHEHUA U
COCTaB/IEHMA OTYETOB MO pe3ynbTaTaM MOAENIMPOBAHWA, OAHAKO OHa npeaocTaBnseT Heobxogumble
6a3oBble KOMMOHEHTbl MogennpoBaHuA. [na obecneyeHuMs NOCTPOeHUA rpadMKOB M BU3yanusaumm
MOZENbHOIo NPOLEcca MOMHO B ONUCaHWE MOAENM NOAKNIUYNTb U3BECTHble dperimBopKK Python, Takne
Kak Matplotlib, Tkinter, Streamlit.

[ns npumepa onuiuem NpPoLLeCC OPraHuW3aLMu NPOnycka NoTOKa NOCeTUTeNel ¢ BXOAHOW odyepenbio Ha
MacwTabHoe meponpuaThe (KOHLEPT, ApMapKa, NapK aTTPakuMoHOB). [pyruMmmn NOXOXUMMK Mpoueccamm
CMCTEM MACCOBOro 0B6C/NYKMBAHWA, KOTOpble CeAyloT aHa/NIOrMYHOM CXeme, MOryT bbiTb CynepmapkKer,
KMHOTEATP, KeNe3HoA40POXKHbIN BOK3aA U T.M.

B aTom npumepe 6yaem moaenmpoBaTb CUTyaLUMIO BXOAHOMO NOTOKA, KOTOPbIN NMOMHOCTbIO 06CNyXKMBaeTcA
06LW,ecTBEHHbIM TPAHCMOPTOM (PUCYHOK 1): aBTOBYC Ha perynapHoi ocHoBe 6yAeT BblCaXKMBATb HECKOJIbKO
nocetTuTenei, KoTopbiIM 3aTeM HYXXHO OyaeT OTCKaHMpoBaTb OWAeTbl Nepes BXOAOM Ha mMeponpuaTue.
Mpeanonoxum, y ogHUx nocetutenen byayt 3apaHee NnpuobpeTéHHble buneTbl (6enarkn), B To Bpema Kak
OPYrMM HY)KHO OyaeT cHavana NoAoWTU K Kaccam, 4Tobbl KynuTb 6uneTbl. JONOAHUTENbHO YC/IOXKHUM
MOZEeNb Y4ETOM BaAPMAHTA BO3MOXKHOIMO MNPUXOAa K Kaccam rpynnamu awogen, UMuUTupys
cemeliHyo/rpynnoByto NOKynky 6unetos. O4HAKO Aanee Ha KOHTPONbHOM MYHKTE KaKAOMY 4YesloBEKY
HY*XHO DyZeT CKaHMpPOBaTb CBOM BMAET NepPCOHaNbHO.

Kacca

f T B ¢

Kacca I I

f ¢ B

" T

PucyHok 1. Cxema ABUKEHMA NOTOKA Y4aCTHMKOB meponpnaTmna

YT106bI CMOAENNPOBATL 3TOT MPOLLECC, HY}KHO PEeLnTb, KaK NPeacTaBUTb Pas/iMyHble cobbITMA, UCNONb3YS
pa3NnyHble BUAbI pacnpeseneHns BepoaTHOCTEN.

HaCTpOl\;lKVI, KOTOpPbIE OTPa3nm B Hawem peannsaunn, BKAKKYAOT TaKME NCXOOHblEe AaHHbIE!

» ABTObYyCbl NpMbbIBatOT B cpeaHem 1 pas B 3 MUHYTbI;

> B Kaxaom aBTobyce byayT HaxoauTbea oT 35 Ao 125 nocetuteneit, Yto moaennpyeTca ¢ UICNoNb30BaHUEM
HOopMa/ibHOro pacnpeaenexua (L = 80, o = 15);

» locetutenn moryt GopmmMpoBaTb rpynnbl oT 1 40 4 YeN0BEeK, YTO CMOAENMPYEM UCMONb3YA HOPMasibHOE
pacnpegenerue (L= 2,5, 6 =0,5), M OKpYrAAs 3To 3HaYeHMe A0 BAnKalLIEro LLeaoro Yucna;

> [Mpeanonoxum, uyto ana 50% nocetutenen notpebyetca npuobpectn bunetsol B Kaccax, eute 50% npuayr c
bunetamm, y*e KynaeHHbIMK 3apaHee (OHNalH);

» Mocetutensm TpebyeTcs NpoiTh OT aBTObBYCa K Kacce 3a Bpems, KOTOPOEe COCTaBASET B CpeaHemM 1 MUHYTY
(HopmanbHoe pacnpegenerue, =1, o = 0,25);

» Mocetutensm TpebyeTcs NPONTM OT KAacchl A0 KOHTPOIA BUIETOB 3a Bpems, KOTOPOe COCTaB/AET OKOJI0
0,5 mMHyTbI (HopMmanbHoe pacnpeaenerue, L =0,5,0=0,1);

> [locetTutenun no npubbITUM BCeraa BbIBMPalOT CaMyto KOPOTKYIO oUYepeapb, U A1 KaXaoM oyepeam ecTb 0AnH
npoaaseL, UAn KOHTPONEp;

> [na nokynku 6unetos B Kacce TpebyeTtcsa okono 1 muHyTbI (HopmanbHoe pacnpeaenenue, u=1,0=0,2);

> CKaHupoBaHMe y KOHTPoEpa 3aHMMaeT oKkono 0.4 MUHYT (HopmanbHoe pacnpegeneHue, u=0,4, 0 =0,1).

MapameTpamu, NpeacTaBAAOWMMN UHTEPEC ANA aHANN3], ABNAKOTCA KOIMYECTBO Kacc Npoaaxu bunetos
(SELLER_LINES) u konunyecTtBo KoHTponépos 6uneto (SCANNER_LINES).

Ons noarotoBkn mogenn Ham notpebyetca Python ¢ pgononHuTenbHbiMM GperimBOpKamu simpy,
matplotlib, scipy, pandas, streamlit. Bubnmnotekun random, collections, math o6bi4HO BXOAAT B AUCTPUOYTUB
Python.

da3zal

HauyHém paspaboTky moaenn c onpeaeneHmns 6asoBoro Habopa NPOLLECCOB U PEeCcypCoB.

—(=)

/rpynna; 3pUTENE - MHUUKWATOPEI
PucyHok 2. BnoyHas napameTpuyeckas cxema N0rm4yeckon moaenm

0b6baBNsAem pecypcbl NpoLLecca Ha OCHOBE KOMMOHEHTa pecypca 13 Simpy:

seller lines = [simpy.Resource(env, capacity = SELLERS PER_LINE)
for _ in range(SELLER_LINES)]

scanner_lines = [simpy.Resource(env, capacity = SCANNERS_PER_LINE)
for _ in range(SCANNER_LINES)]

3anuwem npoueccsl -

Mpouecc def bus_arrival() - npubbiTne aBTObYCa
Npouecc def purchasing customer() - npuxop KJAMeHTa B Kaccy
Npouecc def scanning_customer() - nNpuxon KAMEHTA Ha KOHTPOJb

HauHem dopmupoBaHue mogenu ¢ 406aBAEHMA HUKEPACNONOMKEHHOTO KOAa B NPOrpamMmmy MOAEeNN.

[ns 3TOro HauHUTe HoBbIM dain (.py) B cBoen cnucteme paspabotku (VS Code / IDLE / Anaconda).

-*- coding: utf-8 -*-

import random as rd

import simpy

from collections import defaultdict

BUS_ARRIVAL_MEAN = 3
BUS_OCCUPANCY_MEAN = 80
BUS_OCCUPANCY_STD = 15

PURCHASE_RATIO MEAN = 0.5
PURCHASE_GROUP_SIZE_MEAN = 2.5
PURCHASE_GROUP_SIZE_STD = 0.5

TIME_TO_WALK_TO_SELLERS_MEAN = 1

TIME_TO_WALK_TO_SELLERS_STD = .25
TIME_TO_WALK_TO_SCANNERS_MEAN = 0.5
TIME_TO_WALK_TO_SCANNERS_STD = 0.1

SELLER_LINES = 6
SELLERS_PER_LINE = 1
SELLER_MEAN = 1
SELLER_STD = 0.2

SCANNER_LINES = 6
SCANNERS_PER_LINE = 2
SCANNER_MEAN = 0.4
SCANNER_STD = 0.1

seller_lines, scanner_lines, event_log = [],[],[]
arrivals = defaultdict(lambda: @)

seller_waits = defaultdict(lambda: [])

scan_waits = defaultdict(lambda: [])

rd.seed(4210)

Obwme napameTpbl gnA cbopa CTAaTUCTUKK

class Globals:
npepBapuTeNbHO 3anuweM BpemMeHa MNpubbITUA aBTOOYCOB M KOM-BO NMacCaxupoB,
4TOGBI TOYHO BOCMPOU3BOAWUTB CAYYANHOCTU B SKCMEPUMEHTAX;
npepycmoTpuMm 50 cobbiTuii npvesga aBTobycoB
ARRIVALS = [rd.expovariate(1l / BUS_ARRIVAL_MEAN) for _ in range(50)]
ON_BOARD = [abs(int(rd.gauss(BUS_OCCUPANCY_MEAN, BUS_OCCUPANCY_STD))) for _ in range(50)]
ARRIVAL_ORIGIN = ARRIVALS.copy() # coxpaHuWM OpUrUHajibHble CNUCKU ANs
ON_BOARD_ORIGIN= ON_BOARD.copy() # NOBTOpPHOro MCMoOJIb30BaHMA B 3KCMEpUMEHTEe
cnoBapu CTAaTUCTUYECKUX AAHHbIX ANA AHAJUTUKMK
seller_queues = {v:[] for v in range(SELLER_LINES)}

def pick_shortest(lines):

onpepensieM CaMyw KOpPOTKYyKW oyepefib K pecypcam Mojenun -

¢yHKLMA BO3BpawaeT KopTex, rae Om snemeHT - SimPy resource,

a 1 snemeHT - HoMmep pecypca (HayuMHas c 1, a He c ©) //

HOMep oyepeau BblbUpaeTcA CAy4YailHo nocne nepemewnBaHua shuffle, 4Tob6bl He Bcerga HavyMHaTb C 1oi
shuffled = list(zip(range(len(lines)), lines)) # 1list of tuples (i, line)
rd.shuffle(shuffled)
shortest = shuffled[0][9Q]
for i, line in shuffled:

if len(line.queue) < len(lines[shortest].queue):
shortest = 1
break
return (lines[shortest], shortest + 1)

def bus_arrival(env, seller lines, scanner_lines):

mofenupyem npuesp aBTtobyca 4depe3 BUS_ARRIVAL_MEAN MUHYT,

KoTopbii npuBo3uT BUS_OCCUPANCY_MEAN nwpei;

3TO nepBoe cobbiTUe B MoAenun, Mocne KOTOporo cpabaTbiBawT BCe Apyrue cobbituA
next_bus_id, next_person_id = 0, ©
yHukanbHole ID gnAa aBTObyca u nwpeih OyayT HyXHbl ANA BU3yanusauuu

while True:
next_bus = Globals.ARRIVALS.pop()
on_board = Globals.ON_BOARD.pop()

xpaTb cneaywwmin aBTobycC
yield env.timeout(next_bus)
BbI3OoB register _bus_arrival() gna 3anucu B noru
clientIDs = list(range(next_person_id, next_person_id + on_board))
next_person_id += on_board
next _bus_id += 1
#
while len(clientIDs) > @:
group_size = min(round(abs(rd.gauss(PURCHASE GROUP_SIZE MEAN, PURCHASE GROUP_SIZE STD))), len(clientIDs))
people processed = clientIDs[-group_size:] # nony4uTb nociefHue SNEMEHTb M3 rpynmnbl
clientIDs = clientIDs[:-group_size] # ocTaBuTb id TemM KTO ewe ocTancsa
KTO-TO MAeT B Kaccy, a KTO-TO yxe C 6buneTom ugeT Ha KOHTPOSb
if rd.random() > PURCHASE_RATIO_MEAN:
env.process(scanning customer(env, people_processed, scanner_lines,
TIME_TO_WALK_TO SELLERS MEAN + TIME_TO WALK TO SCANNERS_MEAN,
TIME_TO_WALK_TO_SELLERS_STD + TIME_TO_WALK_TO_SCANNERS_STD))
else:
env.process(purchasing customer(env, people processed, seller lines, scanner_lines))

def purchasing customer(env, people processed, seller lines, scanner_lines):
noponTn K Kacce
walk_begin = env.now
sigm31 = TIME_TO_WALK TO_SELLERS_MEAN - TIME_TO_WALK_TO_SELLERS_STD*3
if sigm31l < ©: sigm31 =0 # HacTpoWKa NeBOM rpaHuULbl TPEyroabHOro pacnpepeneHun
sigm3h = TIME_TO_WALK_TO_SELLERS_MEAN + TIME_TO WALK_TO_SELLERS_STD*3
yield env.timeout(rd.triangular(sigm31l, sigm3h, TIME_TO WALK TO SELLERS MEAN))

walk_end = env.now
BCTaTb B o4epedb
queue_begin = env.now
KNMeHT Bcerpa BbiOMpaeT caMyl KOPOTKyl ovepenb
seller_line = pick_shortest(seller_lines)
xpoem Hadana obcnyxuBaHuA
with seller_line[@].request() as req:
nogoxaaTb B o4epeau
yield req
queue_end = env.now
nokynka 6uneta
sale_begin = env.now
sigm31 = SELLER_MEAN - SELLER_STD*3
if sigm31l < @: sigm3l = © # HacTpoWka NIeBON rpaHuLUpl TPeyroJibHOro pacnpeneneHua
sigm3h = SELLER_MEAN + SELLER_STD*3
yield env.timeout(rd.triangular(sigm31,sigm3h,SELLER_MEAN))
sale end = env.now
BbI30B register_group_moving () ana 3anucu B norwu
env.process(scanning_customer(env, people_processed, scanner_lines, TIME_TO WALK TO_ SCANNERS_MEAN,
TIME_TO_WALK_TO_SCANNERS_STD))

def scanning_customer(env, people_processed, scanner_lines, walk duration, walk std):

nojoWTU Ha KOHTponb buneToB
walk _begin = env.now
yield env.timeout(abs(rd.gauss(walk duration, walk std)))
walk_end = env.now
KNMeHT Bcerpa BblbMpaeT caMyl KOPOTKyl oyepenb
queue_begin = env.now
scanner_line = pick_shortest(scanner_lines)
with scanner_line[@].request() as req:

nopoxaaTb B o4epenu

yield req

queue_end = env.now

KOHTponb 6uneTa y KaxAoro KJuWeHTa

for person in people_processed:

scan_begin = env.now

yield env.timeout(abs(rd.gauss(SCANNER_MEAN, SCANNER STD)))
scan_end = env.now
Bbi3oB register_visitor_moving () mna 3anucu B norwu

OocHoBHas ¢yHKLMA AnA 3anycka Moaenwu
def model_env():
global seller_lines, scanner_lines
env = simpy.Environment()
seller_lines = [simpy.Resource(env, capacity = SELLERS PER_LINE) for _ in range(SELLER_LINES)]
scanner_lines = [simpy.Resource(env, capacity = SCANNERS_PER_LINE) for _ in range(SCANNER_LINES)]
env.process(bus_arrival(env, seller_lines, scanner_lines))
env.run(until = 45)
print("OK!",env.now)

model_env()

3anycTMm Takylo Moenb ANA NPOBEPKMU.
Ecnum ecTb coobuyeHme B KOHCONM -
OK! 45

- 3HA4YUT, moaenNb pa60TaeT, HO pe3y/1bTaTOB HE NOKa3bIBAaE€T U HE co6V|paeT. o710 HaCTpOuMM NO3XKe.

da3a 2

Tenepb gob6aBum PpyHKLMM cbOpa CTaTUCTUKK ANA HabaloaAeHWA pe3ynbTaTos.
[Job6asum B dyHKUM0 model_env()

event_log =[]

nepep, cTpokoi env = simpy.Environment().

MogrotoBMMm cneymanbHblit MOHUTOPUHIOBBIM NpoLecc cbopa CTAaTUCTUKM NO ovepesaM.
BctaBum Kog aTon dyHKUmMK, Hanpumep, nepeg, def bus_arrival().

cneumanbHaa ¢yHKUMA Aons cbopa AAHHbIX
def monitor(ev):
global seller_lines
while True:
3anoOMHMM Tekyuwyk ANUMHY oyepepneint
for i in range(len(seller_lines)):
Globals.seller queues[i].append(len(seller lines[i].queue))
yield ev.timeout(1.9)

AKTMBMpPYEeM 3TOT NpoLecc nepes 3anyckom MoZAe/IbHOM CUCTEMbI (KYPCMBOM 3amnmncaH yxe
HanWCcaHHbIN HaMM paHee Koa):

env.process(bus_arrival (env, seller Lines, scanner Lines))
env.process(monitor(env))

env.run(until = 45)

JobaBum HUMKepacnonoKeHHbIM Koa GYHKUUIA nocne CTPOK ¢ class Globals nepep pasaenom
Koaa OCHOBHble Mpouecchl MoAesnu.

def

def

def

def

avg_wait(raw_waits):

waits = [w for i in raw_waits.values() for w in i]

ret =round(sum(waits)/len(waits), 1) if len(waits) > © else ©
return ret

register_bus_arrival(time, bus_id, people_created):
arrivals[int(time)] += len(people_created)
print(f"ABTobyc {bus_id+1} npuexan B {round(time, 2)} c¢ {len(people_created)} uen")
event_log.append({
"event": "BUS_ARRIVAL", "time": round(time, 2), "busId": bus_id+1l, "peopleCreated": people_created

1)

register_group_moving_from_bus_to_seller(people,walk_begin,walk_end,seller_line,queue_begin,queue_end,sale_begin,sale_end):
waitq = queue_end - queue_begin
service_time = sale_end - sale_begin
seller_waits[int(queue_end)].append(waitq)
print(f"Ipynna {len(people)} 4yen xmana {round(waitqg,2)} muH B oyepeau_{seller_line}, obcnyxunacb 3a {round(service_time,2)} mun")
event_log.append({

"event": "WAIT_IN_SELLER_LINE", "people": people, "sellerLine": seller_line,

"time": round(queue_begin, 2), "duration": round(waitq, 2)

1)

register_visitor_moving_to_scanner(person, walk_begin, walk_end, scanner_line, queue_begin, queue_end, scan_begin, scan_end):
waitq = queue_end - queue_begin
service_time = scan_end - scan_begin
scan_waits[int(queue_end)].append(waitq)
print(f"KnueHT Ha KoHTpone xpan {round(waitq,2)} muH B oyepeau_{scanner_line}, obcnyxuBanca {round(service_time,2)} mun")
event_log.append({

"event": "WAIT_IN_SCANNER_LINE", "person": person, "scannerLine": scanner_line,

"time": round(queue_begin, 2), "duration": round(waitq, 2)

1)

Mcnonb3yem 3T GyHKUMU ANA perncTpanmm cobbiTUiA B CMMCKM IOTOB (XKYPHANIMPOBaHUE).
B dyHKumK bus_arrival() 4oNONHMM BblAENEHHYIO 34eCb CTPOKY (KYPCMBOM 3anMCaH yXKe HanuCcaHHbIM HamMK paHee Koa):

yield env.timeout(next_bus)

aBmobyc npubeln, onpedesnsem Id 0aa npubsiBuux KaueHmoB 0nsa 3anucu 6 nozu

clientIDs = Llist(range(next_person_id, next_person_id + on_board))

register bus_arrival(env.now, next bus_id, people_ids)

next_person_id += on_board

B dyHKumM purchasing_customer() 4ONOAHUM Bbl4eNEHHYIO CTPOKY 34eChb (KYPCMBOM 3anmMcaH y¥Ke HanMCaHHbIM HamMK paHee Koa):

yield env.timeout(rd.gauss(SELLER_MEAN, SELLER STD))

sale_end = env.now

register_group_moving from_bus_to_seller(people_processed, walk_begin, walk_end, seller_line[1],queue_begin,queue_end,sale_begin,sale_end)

env.process(scanning_customer(env, people processed, scanner_Lines, TIME_TO WALK_TO_SCANNERS_MEAN,
TIME TO WALK_TO_SCANNERS_STD))

B dyHKLMM scanning_customer() 4ONONHMM BblAeNIeHHYIO0 CTPOKY 34eChb (KYPCMBOM AaH HanuCaHHbIA paHee Koa):

scan_begin = env.now
yield env.timeout(abs(rd.gauss(SCANNER_MEAN, SCANNER_STD)))
KoHmpoae 6unemoB npolideH

scan_end = env.now

register_visitor_moving_to_scanner(person, walk_begin, walk_end, scanner_line[1], queue_begin, queue_end, scan_begin, scan_end)

3anycTum TaKylo mogenb ANA NPoBepKu paboTbl.

Mocne 3anycka MoAenu A0MKeH HabntoAaTbCA BbIBOA, HAa KOHCO/Ib XKypHaia cobbITUiA (PUCYHOK 3).

Fpynna knuedToe 1 4en waana 1.99 muu B odepeau 6, obcnykunace 3a 1.1 mud
KnuenT Ha kodTpone xgan 8.76 muH B okdepegu 3, obcnyxueanca 9.86 mMuH
KnuenT Ha konTpone xgan 1.15 mun B ouvepeagun_ 4, obcnyxweanca ©.88 muH
KnuenT Ha kowTpone xgan @.76 mun B okepeaun_ 3, obcnyxweanca 9.85 muH
KnueHT Ha kKodTpone xgan @.95 MuH B odepeauw_ 2, obcnyxueanca 9.08 muH
Fpynna knuedToe 2 4en waana 1.66 mue B odepeau 2, obcnyxunacs za 1.26 mMuH
KnuenT Ha kouTpone xgan 8.92 mue B okepegu 1, obcnyxueanca 8.2 muH
Aetobyc 11 npuexan B 33.57 c 74 4en
KnuenT Ha kowTpone xgan @.95 mun B okepeagun_ 2, obcnyxweanca 9.089 mun
Fpynna KAWeHToE 2 4en xaana 2.09 muHe B odepeau_ 3, obcnywunace za 0.9 MuH
KnuenT Ha kodTpone xgan 1.15 muH B ouepeaun 4, obcnyxueanca 9.12 muH
KnuenT Ha kodTpone xgan 8.92 mun B odvepegu 1, obcnyxweanca ©.86 muH
Mpynna knuventoe 1 sen xaana 2.19 mue B okepean 5, obcnymunace za 8.8 muH
KnuenT Ha kowTpone xgan 1.24 mun B ouepegun_ 4, obcnyxweanca 9.85 muH
KnuenT Ha kodTpone xpgan @.77 Mmub B ouvepeau_ 3, obcnywxueanca 9.16 mMuH
KnuenT Ha kodTpone xgan @.85 MmuH B odepeaum 2, obcnyxueanca 9.89 mMmuH
KnuenT Ha kouTpone xgan 8.77 muH B odepegu 3, obcnyxweanca ©.87 muH
KnuenT Ha kouTpone xgan 1.24 mun B okepegu_ 4, obcnyxumeanca 8.1 muH
KnuenT Ha konTpone xgan 1.11 mun B ouepeaw_ 1, obcnyxwmeanca 9.15 muH
KnuedT Ha kodTpone xaan 8.85 mud B ouvepeau 2, obcnywxueanca 8.1 mun
KnuenT Ha kodTpone xgan 1.17 mue B ouepeaun 4, obcnyxueanca 9.87 mMuH
Fpynna kKnuewToe 2 4en xaana 1.92 mue B osepegm 4, ofcnywxunace za 1.26 mMuH
KnuenT Ha kowTpone xgan @.85 mun B okepeagum_ 2, obcnyxweanca 9.85 muH
KnuenT Ha konTpone xgan 1.11 mun B ouepeawn_ 1, obcnyxumeanca 9.88 mun
KnuedT Ha kodTpone xaan 8.77 mud B ouvepeau_ 3, obcnywueanca 8.17 mun
KnuenT Ha kouTpone xgan 1.1 mud B odepeaw 3, obcnyxueanca .84 mud
KnuenT Ha konTpone xgan 1.11 mun B ouepeaun_1, obcnyxweanca ©.89 muH
KnuenT Ha kowTpone xgan 1.17 mun B ouepegun 4, obcnyxweanca 9.13 muH
PucyHok 3. *ypHan cobbITnii B KOHCONM

®da3za 3

Tenepb ANA nNpoBeAeHUMA pacYeTHbIX 3SKCNEePMMEHTOB AOGaBVIM BO3MOXHOCTb
napameTpamum mexxay moaesibio n I'IpOFpaMMOl\;I ynpaBaeHUA aKCNepUMeHTOM.

B 06nactn ob6bABneHNA rnobasibHbIX NepeMeHHbIX 406aBMMm:

OKHO = True # dnar BM3yanusauum XypHana B OKHE KOHCOM
(3ameyaHue: 8 udeHmugpukamope OKHO sce cumsosibl AGMUHCKUeE :)

MoarotoBnm nepesavy NnapameTpoB Yepes aprymeHTbl Bbi30Ba GYHKUUN MOLENMN.

def model _env(config=None):

[anee po6aBMM HUMKE CTPOKU 06bABNEHUI 106aNbHbIX NEPEMEHHbIX:

global seller_lines, scanner_lines, event_log
global SELLER_LINES, SCANNER_LINES, OKHO

obmeHa

B camoit pyHKUMM nocne CTpokn env = simpy.Environment() ao6asum Takoi Koa:

OKHO = False # Hapo BbIBOAUTb COOBGWEHNA B KOHCOJb?
finitime = 45
if config:
SELLER_LINES = config["num_cashiers"]
SCANNER_LINES = config["sel _scanners"]
rd.seed(config["seed select"])
finitime = config["simulation_time"]

MN3meHUM 3anyck mogenu Tak:
env.run(until = finitime)
Job6asum Bo3BpaLlaembiii pe3yabTaT ns PyHKLUMN MOOENN:

resq = {f'Q{v}':Globals.seller_queues[v] for v in range(SELLER_LINES)}
return event_log, resq

CospgaHHble cnuckm ARRIVALS 1 ON_BOARD nocne nx co3gaHua B Koge CoOXpaHum ana
BOCMNPOM3BEAEHNA NMPU SKCNEPUMEHTUPOBAHNU. 1A 3Toro B yHKUMM model env aobaBum Ko
nepeg CTPOKOM

seller_lines =[simpy.Resource(env, capacity =SELLERS_PER_LINE) for _ in
range(SELLER_LINES)]

CTPOKM
Globals.seller_queues = {v:[] for v in range(SELLER_LINES)}
Globals.ARRIVALS=Globals.ARRIVAL ORIGIN.copy()
Globals.ON_BOARD=Globals.ON_BOARD_ORIGIN.copy()

B koze Bcex GYHKLMIA perncTpaumnmn cobbiTuii CKOPPEKTUPYEM BbIMOIHEHME BCEX OMNEepaTopoB
print() c yuetom dpnara OKHO B Buge:

if OKHO: print(f"AsTobyc {bus_id+1} npuexan B {round(time, 2)} c {len(people_created)} uen")
3anycTuTte 4Nna NPoBePKM Mmoaenb Kak ¢ dpnarom OKHO = True, Tak u OKHO = False ---
print(model_env())

CoxpaHum ¢ain c mogensto nof Ha3saHuem exper_tickets.py

Mogaenb B OCHOBHOM rOTOBA A1 PAa30BbIX 3KCMEPUMEHTOB.

[na NnpoBepKM 3anycTute MoAe b C PasHbIMM HayanbHbiMK 3HaYeHMAMMK TICHY random.seed(),
nonpobyiTte 3-4 BapunaHTa.

Y6eauTtecb B pasiMunmn Noay4yaemblx pesyibTaToB, COXPAHUTE UX B OTYET O BbINOJIHEHHOM paboTe.

da3za 4

CnpoeKtupyem rpaduyeckunii MHTepdpenc ans HabaoaeHMa pesynbTaToB MOAENN Ha OCHOBE
dpenmeopKa Streamlit.

Streamlit — ¢ppeiimBopk Python ¢ OTKpPbITbIM UCXOAHBIM KOAOM, KOTOPbIM NONYAPEH A5 NPOEKTOB
B 061aCTU MaLUMHHOTO 06y4YeHnA U aHaAn3a gaHHbiX. OH N03BOAAET NY6AMKOBATb BED-NPUNOKEHNSA
B 06LWeM A0CTyne, U UCNOb3yeT BCTPOEHHbIN Beb-cepBep C BO3MOXKHOCTbIO Pa3BepTbiBaHUA KakK
JIOKaNbHO, Tak U B KOHTeHepe docker.

YcraHoBKa Streamlit genaetca, Hanpumep, C MTOMOLLLbIO KOMaHAb!:

pip install streamlit

Mocne ycTaHOBKM M 3aMyCKa TaKoro NPU/IOXKEHUA HYXKHO B Bpay3sepe nepeiTn no fnokaabHomy URL
localhost:8501, yTo6bl yBUAETL NpUoKeHue Streamlit B gelicteum.

Streamlit no3BonsieT oTobparxkaTb B KINEHTCKOM Opay3epe AaHHbIe HECKONIbKMMU KOMaHAaMM:
st.title() - ana yctaHOBKM 3arosioBKa;
st.text() - ons 3anucm onncanua ana rpadumka;
st.markdown() - ans oTob6paxkeHus Tekcta B Buae markdown;
st.latex() - 4nAa oTobparkeHMAa maTeMATUHECKUX BbIPAXKEHMU HA NAaHENN MOHUTOPUHTA;
st.write() - nomoraeT oTobparkaTb BCe BO3MOMKHbIe AeTann, Hanpumep, rpaduk, ppenm
AaHHbIX, GYHKUMM, MOAEeNb U T.4.;
st.sidebar() - gna oTobparkeHMa AaHHbIX Ha BOKOBOM NaHenu;
st.dataframe() - ana otobparkeHuns ¢ppeima gaHHbix Pandas;
st.map() - 4na oTobparkeHns KapTbl U T.N.

C Beb-npunorkeHnem obblMHO paboTaloT Tak:
% OTKpblBaemM Aana wusmeHeHun daiin Python B pepaktope koga (Visual Studio Code,
Notepad++, SublimeText u np.)
** Habnwopgaem 3a U3MmeHeHuAMM B Bpaysepe, PacnoNOKEHHOM B COCEAHEM OKHe, 06HOBAAA
CTPaHWUYKy 6pay3epa c Beb-moaynem NpuaoKeHUs.

Cospgagum daiin app.py v BCTaBMM B HEFO TaKOM Koa;:

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt

MmnopT Hawew mogenu simpy
import exper_tickets as mdl

OyHKUMA AnA 3anycka CUMyJISUMM U Nepefayun AaHHbIX B peasibHOM BpeMeHM
def run_simulation (params):

"""3anyckaeT MoAenuMpoBaHMe C MCMNOJb30BaHMEM MapamMeTpoB

results = []

3anyck mogenu

results = mdl.model env(config=params)

BO3BpaT pe3yibTaTa

return results

st.set_page_config(
page_title="mopeno_tect",
page_icon=":shark:",
layout="centered",
initial_sidebar_state="expanded"

)

WHTepdenc Streamlit
st.title(":hearts: MogenupoBaHue cepBuca")

with st.sidebar:

with st.form(key="input_form"):
HacTpoilku napameTpoB MoLenu
st.header("MapameTpbl Mogenn :clubs:")
num_cashiers = st.slider("KonuyectBo kaccupoB", 3, 10, 1)
cashier_processing time = st.slider(

"CpegHee Bpemsa obcnyxuBaHua B kacce (cek)", 30, 100, 10)

sel scanners = st.selectbox("KonuyectBo koHTponépos", (4,5,6,7,8,9))

queue_timeout = st.slider("CpenHee BpemA ob6cnyxuBaHUA Ha KoHTpone (cek)",15,50,5)

p_range = ('Magadan', 'Vorkuta', 'UlanUdae')
seed_select = st.radio('seed', p_range)
simulation_time = st.slider("Bpema mogenupoBaHusa (MuH)", 10, 90, 5)

st.session_state.pr_click = st.form_submit button(label=":spades: 3anyck mogenu")

lNoAroTtoBKka MapamMeTpoB 3anycka moaesnu

params = {
"num_cashiers”: num_cashiers,
"cashier_processing_time": cashier_processing_time,
"sel scanners”: sel scanners,
"queue_timeout": queue_timeout,
"seed_select": seed_select,
"simulation_time": simulation_time,

}

KHonka pna 3anycka

if st.session_state.pr_click:
KoHTelHepbl ana rpadukoB M MeTpuk
progress placeholder = st.empty()

3anyck mopenu!

with st.spinner("& 3anyck mogenun..."):
events, sell queues = run_simulation(params)
dfl = pd.DataFrame(events)
df2 = pd.DataFrame(sell_queues)

graphl_placeholder = st.empty()
graph2_placeholder = st.empty()
st.success("MogenumpoBaHue 3aBepweHo!", icon=" ")

Ona 3anycka npunoxenus Streamlit 8 OC Windows ucnosibayem KomaHay B OKHe TepMUHana:

C:\Users\USER\AppData\Local\Programs\Python\Python312\Scripts\streamlit.exe run app.py

- 3pecb BMecTo USER 6yaeT nma Bawero nonb3osatens Windows, n smecto Python312 6yaet
Ha3BaHMe Bawen Bepcuu Python.

[na ypobctea 3anycka npunoxkeHna mogenn B Windows HyxHo caenaTb Gpann-apabik streamlit-
app.Ink

ﬁ CeoWcTea: streamlit-app

LlgeTa TepranHan CoEMeCTAMOCTE
BesonacHocTs MNoppofHo [penbinyuiMe BEpCHA
Dbwme Apnkik HacTpobika WpwepT Pacnonoxerwe
@ streamlit-app
]
Twn obbekTa: MpunoxeHue

Pacnonoxenwe: Scripts

DabexT: |"_.rth|:|n'-.P"_.rthcunE'I2'-.Scripts'-streaml'rt.e::e mn app.p'_.'|

Pabouans nanka: || |

EoicTpeif Boiz0oE: | Het |

CikHo: DBbIYHEIR pazMep oKHA w

KormeHTapui; | |

Pacnonoxenwe palina | |CMeHnTe sHadok... | JononHWTeEnsHo. ..

Tenepb 3anycTuTe mogeib C NOMOLLbIO 3TOTO AP/ibIKa ANA NPOBEPKU pa6OTbI NpUuNoXeHunA.

da3a b

Tenepb NoAroToBUM Mogenb exper_tickets.py Ana Ucnonb3oBaHWA B CTAaTUCTUYECKOM PAacYETHOM
9KCNEPMMEHTE, HAaCTPOMB COOP AaHHbIX A1A CTaTUCTUUYECKOTrO pacyéTa c noMmoLbio GpeiMmBopKa

scipy.
[ob6aBnm TaKoM HOBbIN KOA, MOCAE BCEro paHee CO34aHHOMo Koga MogeNu:

from scipy import stats
import math

def stat_experimentA():
global SELLER_LINES, SCANNER_LINES, OKHO, seller_waits, scan_waits
BbIK/YAEM BbIBO4, B KOHCOJb
Tmp = OKHO; OKHO = False
skcnepumeHT_1_

Level = 4 # kon-BO ypoBHe#W ¢akTopa
numReplica = 11 # KON-BO penJuK Ha KaxAoOM YypOBHe
print("_3anyck skcnepumeHTa_")
#1
experiment_ds ={o:[] for o in range(Level)}
cospagum cnoBapb CMNUCKOB pe3y/bTaTOB MOLENUPOBAHWA
for £ in range(Level):
SELLER_LINES = 4+f
SCANNER_LINES = 6
print(f'_ypoBeHb ++ {f+1} ++ SELLER_LINES= {SELLER_LINES}'")
for i in range(numReplica):
cbpoC CMUCKOB CTATUCTUKM
arrivals = defaultdict(lambda: 9)
seller_waits = defaultdict(lambda: [])
scan_waits = defaultdict(lambda: [])
Globals.seller_queues = {v:[] for v in range(SELLER_LINES)}
yCcTaHOBKa HOBOrO CJly4.3epHa
rd.seed(732 + i*numReplica + f)
model_env() # 3anyck mozenu
if OKHO: print(f'+ {f+1} + pennuka_{i+1} +')
coxpaHseM pe3ynbTaT MpPOroHa
experiment_ds[f].append(avg_wait(seller_waits)+avg _wait(scan_waits))
OKHO = Tmp
if OKHO: print (experiment_ds)

[na npoBepKu 3anyctute Koa exper_tickets.py yepes HOBbI SKCMEPUMEHT, HO NPeaBapPUTENbHO
3aKOMMEHTUPYITE BbI30OB NPOCTOr0 NPOroHa MOAE/NN:

print(model_env())
OKHO=True

3anyck cTaT.3KCNepuMeHTa
stat_experimentA()

Celtyac gonxeH otpaboTaTb LMKA cbopa CTaTUCTUKM Be3 BU3yanmnsaumm paboTbl, HO C NOKa3oM Mo
3aBepleHumn paboTbl COCTOAHMA coBapA experiment_ds.

Ha BTOopoMm wWare HacTPOMKM 3KcnepumeHTa Aobasum 610K Koga 06paboTkM cobpaHHOM
CTaTUCTUKK. [na 3Toro byaem MCnonb30oBaTb CTaTUCTUUECKYIO BubanoTeky SCipy.stats.

2
print('\n_CBogHas onucatenbHasa cTaTucTuka_\n ¢akTop SELLER_LINES npuHuman
3HayeHua [4,5,6,7]\n")

statDescript ={
'N':[@]*Level, "smm':[@]*Level, 'sm':[@]*Level, 'sv':[0]*Level,
'ss':[@]*Level, 'sk':[@]*Level, 'D_KS':[@]*Level, 'pval KS':[0@]*Level,
'"F':[@]*Level, 'pval_F':[@]*Level }
for z in range(Level):
nn, (smin, smax), smn, sv, ss, sk = stats.describe(experiment_ds[z])
statDescript['N'][z]=nn # pasmep BbIOOPKM
statDescript['smm' J[z]=(round(smin,3), round(smax,3))
statDescript['sm'][z]=round(smn,3) # cpenHee BbibOpOYHOE

statDescript['sv'][z]=round(sv,3) # aucnepcua BbiGOpKM

statDescript['ss'][z]=round(ss,3) # skew/ckoc

statDescript['sk'][z]=round(sk,3) # kurtosis/akcuecc

if OKHO: print(f'NaTtacet{z+1}::{nn}: cpeaHee= {round(smn,3)} | aucnepcus
= {round(sv,3)} | min={round(smin,3)} | max={round(smax,3)}")

HopManusyem [AaHHble faTaceTa nepej TeCTOM HAa HOPMAJNIbHOCTb

zx = (experiment_ds[z] - smn) / math.sqrt(sv)

npvmeHum TecT KonmoropoBa-CMUpPHOBA Ha HOPMAJIbHOCTb pacnpegeneHus

dks, pval = stats.kstest(zx, 'norm")

print (f'DataceTt{z+1}: KS-cTatucTtuka: D={round(dks,4)} | p-value =
{round(pval,4)}\n")

statDescript['D_KS'][z]=round(dks,4)

statDescript['pval_KS'][z]=round(pval,4)
print(statDescript)

3anyctute exper_tickets.py yepes BbI30B 3KcnepumeHTa stat_experimentA().

Celtyac gonxeH otTpaboTaTb LMK cObopa CTaTUCTUKM Be3 BU3yanunsaumm paboTbl, HO C MOKa3oMm Mo
3aBepleHMn paboTbl COCTOSHUA cnoBaps experiment _ds n Habopa AaHHbIX CBOAHOW onucaTe/IbHOM
CTaTUCTUKM NO cObpaHHbIM HabtogeHUAM.

Ha TpeTbem ware HaCTPOMKM 3KcnepumeHTa Ao06aBnM Kog, pacyéta no metoay 0AHOPAKTOPHOTO
ANCNEePCMOHHOIo aHanmsa ANOVAI, KOTOPbI MOXKET NOKa3aTb CTEMNEHb BANAHUA N3MEHYMBOCTU
dakTopa Ha pe3ynbTat. PaKTOPOM ABAAETCA KOIMYECTBO KaCC, Pe3yNbTaTOM — BPEMA OXKMUAAHUA B
oyepesax.

3

print("\n_OaHodaKTOpHbIA AMCnepCcUOHHbIn aHanu3 ANOVA (alpha= ©.05)_\n")

F, pval = stats.f_oneway(experiment_ds[@], experiment_ds[1],
experiment_ds[2], experiment_ds[3])

print (f'sHaveHue kputepua F: {round(F,4)} | p-value: {round(pval,4)}")

statDescript['F'][@]=round(F, 3)

statDescript['pval F'][@]=round(pval,4)

return statDescript

Mogenb ¢ aKcnepuMeHTabHbIM UCC/Ie40BaHMEM NOATOTOBAEHA.
3anyctum exper_tickets.py c 3TUM 3KCNEPUMEHTOM:

print(stat_experimentA())

3agaHue ana camocToATeNbHOM paboTbl - YTOUHMUTE NO PACCUUTAHHOM AMCMNEPCUN KOINYECTBO
NPOroHoB (pennuK) ana obecneyeHMA KayecTBa OLLEHKM HA YpoBHe 95% ¢ TouHOoCTbo 0,5.
BHecuTe nsmeHeHMA B KONMYECTBO NPOrOHOB U NOBTOPUTE 06PabOTKY AAHHbLIX NO YTOYHEHHOMY
PACcYETHOMY IKCNEPUMEHTY.

da3a b6

BepHEMCA K NPUNOKEHNIO MOLENNPOBAHMA U A,06aBMM NOCTPOEHME rPAadUKOB C UCNO/Ib30BaHMEM
6ubnmnotekm matplotlib B daitne npunoxeHuns app.py. B sTom cnyyae TpaguLMOHHO UCNONb3YIOT
dpenmBopk pandas, nobasnAOWMIA yA0OHbIE BOSMOXKHOCTM 06paboTKM AaHHbIX.

Hangute sToT dparmeHT KoAa U USMEHUTE Ha TaKOW KOA C ucnpasiaeHMem 6,10Ka 3anycka Mmoaenu:

3anyck mopenu!

with st.spinner("& 3anyck mogenu..."):
events, sell queues = run_simulation(params)
dfl = pd.DataFrame(events)
df2 = pd.DataFrame(sell_queues)

graphl placeholder = st.empty()
graph2_placeholder = st.empty()
st.success("MogenupoBaHue 3aBepuweHo!", icon=" ")

fig, ax = plt.subplots(figsize=(8,6), layout='constrained', facecolor='0.7")
for sc in df2.columns:

ax.step(df2.index, df2[sc], label='Kacca_ '+sc)
ax.legend(loc="upper left')
O6HoBNeHWe rpaduka
graphl_placeholder.scatter_chart(dfi[["person"]])
graph2_placeholder.pyplot(fig)

UToroBble MeTpuUKU
st.write("WUToroBbie MeTpukn:")
st.write(df1)
st.dataframe(df2)

if statest :
with st.spinner('BbinonHseTca..."'):
results = mdl.stat _experimentA()
t_df = pd.DataFrame(results)
st.write(t_df)
ff = t df[['F'][0]]
fp = t_df[['pval_F'][0]]

st.metric("kputepuit F-tect", ff[0], fp[O])

if fp[0]>0.05:
st.markdown("**I'vnoTe3a HO He oTKnoHAeTCH!**")

else:
st.markdown("**Irmnotesa HO oTknoHAeTcal**")
st.success(" CraTucTuyeckumin aHanus 3asepuweH!", icon=" ")

3afaHue gnAa cCaMocToATeNbHOM PaboTbl - HAaCTpoOMTe U NPOBEeANTE CBOM SKCNEPUMEHT
stat_experiment_B no oueHke BanAHMA gpyroro napametpa mogenn SCANNER _LINES Ha ToT XKe
pe3ynbTaTt npouecca. CpaBHUTE C pe3y/ibTaTamMm NEPBOro SKCNEPUMEHTA, CAeNanTe NMCbMEHHO
BbIBOAbI B Ppaitne oTyeTa.

da3za 7

Ana NOCTPOEHNA NPUNOKEHNA C BOSMOXKHOCTbIO PaClLUNPEHNA BAPUAHTOB SKCNEPUMEHTUPOBAHUA

M3MEHUM KoZ NpunoxkeHus streamlit B Gopme MHOroCTPaHMYHOIO NPUIOKEHMA.

CoenaiTe B cBOel paboueit nanke, rae HAXo4MTCA KOA NporpamMmmbl mogenun Python, BnoxeHHyto
nanky pages Ana KoAa CTPaHUL, NPUNOXKEHUA, U Cy»KebHyto nanky .streamlit (c Toukol B Hayane!).

Co3pgalite B cBOeN paboyer nanke ¢paiin cTapToBoOM CTpaHULbI start.py.
BnuwuTe B HEro Takom koA,

-*- coding: utf-8 -*-
import streamlit as st
import graphviz

HacTpoika uHTepdeiica Streamlit -nepswii onepatop!
set_page_config(
page_title="mopeno_A",

st.

page_icon=" ",

layout="wide",
initial sidebar state="expanded"

)

st.title(":hearts: MogenupoBaHue npoxofa Ha meponpuaTue")
st.write("MogenvpoBaHue npoLEeCcCOB OpraHuM3auuMM MNpornycka noToka noceTuTenen™)
st.sidebar.page_link("pages/Main_model.py", label="Ba3oBas mogenb")
st.sidebar.page_link("pages/Experiment_1.py", label="3kcnepumeHT A")
st.divider();

st.write("BbnoyHas cxema npouecca")

dot_string = """

digraph MG {

rankdir="LR"

[label="Mpuesn", shape=rectangle, style=filled, fillcolor=lightblue];
[label="Kacca", shape=rectangle, style=filled, fillcolor=lightblue];
[label="KoHTponb", shape=rectangle, style=filled, fillcolor=lightblue];
[label="Bbix0on", shape=circle, style=filled, fillcolor=white];
[label="rpynna", shape=ellipse, style=filled, fillcolor=cyan];
[label="nepcoHa", shape=ellipse, style=filled, fillcolor=cyan];
[label="nepcoHa", shape=ellipse, style=filled, fillcolor=cyan];

T 9O RXAONDWD>

“ I >N TVTWXD>

->
->

K [color=blue, style=bold];
B [color=blue, style=bold];
P [color=blue, style=bold];
C [color=blue, style=bold];
D;

H [color=green, style=bold];
C [color=green, style=bold];

st.graphviz_chart(dot_string)

3pecb B Ko f06aBNEH TEKCT ONMCAHMA TOTUYECKOM CXeMbl Npoueccos B popmaTte DOT,
ncnonb3yembiii B 6ubanoteke graphviz. Ecam atot rpad He oTobparkaetca, ycTaHoBUTE 6MBNMOTERY
pip install graphviz

B nanke pages co3gaiite paiinbl Main_model.py u Experiment_1.py, Bbi3biBaemMble 13
CTAPTOBOW CTPAHMUbI. B HUX ANA OTNagKM BPEMEHHO 3anuLLMTe NyCTOM onepaTop pass.

[na npaBUNbHOM HAacTPOWKKM PaboTbl BEG-NpUNOKeHUn streamlit HYXKHO U3MEHUTb ero

KoHdurypauuio yepes dpainn config.toml, KoTopbiii AoKEH HaxoAUTbCA B Nanke .streamlit
CopepxaHue ¢anna config.toml:

[server]
folderWatchBlacklist = []
fileWatcherType = "auto"
headless = false

runOnSave = false

enableCORS = false
enableXsrfProtection = false

port = 8501

[client]

showErrorDetails = "none"
showSidebarNavigation = false
toolbarMode = "viewer"
[runner]

magicEnabled = true
fastReruns = true
enforceSerializableSessionState = false

enumCoercion = "nameOnly"
[browser]
serverAddress = "localhost"

serverPort = 8501

gatherUsageStats = false

[theme]

This can be one of the following: "light" or "dark"
base = "light"

primaryColor = "#263543"

backgroundColor = "honeydew"

Ona nposepku paboTbl Mogenu 3anyckaiTte Streamlit-npunoxenue:

streamlit.exe run start.py

Mocne NpoBepKM CTapTOBOM CTPAHULLbI BHECEM KOZ Bbl30Ba OCHOBHOW MoAenu B dann
pages/Main_model.py ITOT KOA B OCHOBHOM Obl/l NPOTECTUPOBAH B NEPBOM BapuaHTe
3KCrnepumeHTa app.py.

-*- coding: utf-8 -*-

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

WmnopT mopenu
import exper_tickets as mdl

df1, df2 = 0, o

OyHKUMA ANnSA 3anycka MMMTAUMM U MNOJNYYEHUA OAHHbIX B peasbHOM BpeMEHMU
def run_simulation (params):
"""3anyckaeT CUMyNAUUID C MCMNOSb30OBAHMEM MapaMeTpoB
results = []
3anyck mogenumpoBaHuA
results = mdl.model env(config=params)
return results

HacTpoiika uHTepdeinica Streamlit -nepsbii onepaTop!
st.set_page_config(

page_title="mopenb_1",

page_icon=":shark:",

layout="centered”,

initial sidebar state="expanded"

)

st.title(":hearts: MogenupoBaHue npoxopa Ha MepornpuaTue")
tsl = st.container()

with st.sidebar:
st.page_link("Start.py", label="[CtapToBas cTpaHuua]")
with st.form(key="input_form"):
st.header("MapameTpbl NporoHa mogenu")
MNapameTpbl MoAenu
num_cashiers = st.slider("KonuyectBo kaccupoB", 3, 10, 1)
cashier_processing time = st.slider(
"CpenHee BpemAa obcnyxuBaHus B kacce (cek)", 30, 100, 10)
sel scanners = st.selectbox("KonnyectBo KoHTponépos", (3,4,5,6,7,8))
queue_timeout = st.slider("CpenHee Bpemsa ob6cnyxuBaHuA y KOHTponépa (cek)",
15, 50, 5)
seed select = st.radio('seed', ['Magadan', 'Vorkuta', 'Ulanudae'])
simulation_time = st.slider("Bpema mogenupoBaHua (MuH)", 10, 100, 5)
st.session_state.pr_click = st.form_submit button(label=":spades: 3anyck
mogenn")

MopgroToBka MapameTpoB 3anycka MoAenu

params = {
"num_cashiers": num_cashiers,
"cashier_processing time": cashier_processing time,
"sel scanners”: sel scanners,
"queue_timeout": queue_timeout,
"seed select": seed select,
"simulation time": simulation_time,

}

KoHTeilHepbl AN rpadukoB U MeTpuK
tcl = st.container()

tcl.write (":spades: Mogenb")
tcl.graphl placeholder = st.empty()
tcl.graph2_placeholder = st.empty()
tc2 = st.container()

tc2.datal placeholder = st.empty()

tc2.data2_placeholder = st.empty()

KHonka AnAa 3anycka mogenu
if st.session_state.pr_click:

with st.spinner("& 3anyck mopenu..."):
events, sell queues = run_simulation(params)
tsl.success("MogenupoBaHue 3aBepueHo!", icon=" ")

dfl = pd.DataFrame(events)
df2 = pd.DataFrame(sell queues)

if isinstance(df2, pd.DataFrame):
fig, ax = plt.subplots(figsize=(7, 4),layout='constrained',facecolor='0.7")
for sc in df2.columns:
ax.step(df2.index, df2[sc], label="'Kacca_'+sc)
ax.legend(loc="upper left')
O6bHoBNeHWe rpaduka
tcl.graph2_placeholder = st.pyplot(fig)

O6HOBNeHWe rpaduka
if isinstance(dfl, pd.DataFrame):
tcl.graphl_placeholder = st.scatter_chart(dfil[["person"]])

WToroBble MeTpuUKHU

if isinstance(dfl, pd.DataFrame):
st.write("WUToroBbii XypHan mogenumpoBaHua")
tc2.datal_placeholder = st.dataframe(dfl)

if isinstance(df2, pd.DataFrame):
st.write("XypHan ouepepeit B kacch")
tc2.data2_placeholder = st.dataframe(df2)

st.divider()
st.text("_")

Tenepb BHECEM KOZ, 3anycKa aKcnepumeHTa B paitn pages/Experiment_1.py ITOT Koz 6bin
MPOTECTMPOBaH B NEPBOM BapuaHTe 3KCNEPUMEHTA app.py .

-*- coding: utf-8 -*-

import streamlit as st

import pandas as pd

import matplotlib.pyplot as plt

UmnopT mopenu
import exper_tickets as mdl

res =[]

HacTpoiika uHTepdeiica Streamlit -nepsbii onepaTop!
st.set_page_config(
page title="skcnepumeHT A",
page_icon=":shark:",
layout="wide",

initial_sidebar_state="expanded"
)
st.title(":hearts: MogenupoBaHue npoxoga Ha meponpuaTue")
levels=4; sellers=3; scanners=2; replics=10

with st.sidebar:
st.page_link("Start.py", label="[CtapTtoBas cTpaHuua]")
st.markdown (' *2KCNepuMeHT U CTaTUCTUYECKUA aHanus*')

with st.form(key="input_form"):

st.header("MNapameTpbl 3KcnepumeHTa")

lMNapameTpbl moaenwu

sellers = st.slider("Hauy.konunyectBOo Kaccupos", 1, 9, 1)

levels = st.selectbox("KonunyectBo ypoBHei ¢akTopa", (3,4,5,6,7,8))

st.divider()

scanners = st.selectbox("Konn4yectBo koHTponépos", (2,3,4,5,6,7,8,9))

replics = int(st.number_input("KonuyecTtBo penauk", min_value=2, value=9))

st.session_state.ex_click = st.form_submit button(label=":spades:
BbiNONHUTL 3KcnepumeHT")

MoAroToBKa MapameTpoB 3amnycka 3KCNepuMeHTa
params = {

"Levels": levels,

"Sellers": sellers,

"Scanners": scanners,

"Replics": replics

}

st.write (":computer: OTceuBawwMii 3KCNEpUMEHT MO MapaMeTpy KoaumyecTBa kacc")

3anyck mogennpoBaHuA

if st.session_state.ex_click :

with st.spinner('BbinonHseTtca..."'):

res = mdl.stat _experimentA (config=params)
st.markdown("__OaHOGaKTOPHbI AMCNEpPCUOHHbIA aHanu3 ANOVA (alpha=0.05) ")
t_df = pd.DataFrame(res)
st.write(t_df)
ff = t df[['F'][0]]
fp = t_ df[['pval_F'][0@]]

st.metric("kputepuit F-tect", ff[0], fp[O])

if fp[0]>0.05:
st.markdown("**I'vmnotesa HO He oTknoHAeTcal** \
JKCcnepumeHT He noAaTBepxaaeT BAnAHue dakTopa \
")

else:
st.markdown("**I'vunoTtesa HO oTknoHAeTcal** '\
3KCnepuMeHT MoATBepxAaeT BnAuAHue daxkTopa \

st.success(" CTraTucTuyeckumin aHanus 3asepuweH!", icon=" ")

Kopg B dpaline Experiment_1 npeanonaraer UCNo/b30BaHME CO34aHHOIO PacYETHOrO 3KCNEPUMEHTA
C Nepeayelt HaCTPOEYHbIX MapaMeTPOB ANs NPOBEAEHMNA pacyéTa.

[na atoro ncnpasbte B dpaiine exper_tickets.py opopmneHune Kkoaa BbINoOAHEHMA
stat_experimentA B Takom Buae (HalauTe 3TOT GpParMeHT U 3aMeHUTe 3Ty YacTb KoAaA):

def stat_experimentA(config=None):
global SELLER_LINES, SCANNER_LINES, OKHO, seller_waits, scan_waits
OKHO = False
#
Level = 4 # kKon-BO ypoBHeil ¢akTopa
numReplica = 10 # KON-BO penauMK Ha KaxAOM YpOBHe
Sellers = 4 # Ha4.KoN-BO Kacc
Scanners = 6 # ¢UKC.KON-BO KOHTpOJiepoB
#
if config:
Level = config["Levels"]
Sellers = config["Sellers"]
Scanners = config["Scanners"]
numReplica = config["Replics"]
#
skcnepumeHT 1
print("_3anyck skcnepumeHTa_")
#1
experiment_ds ={o:[] for o in range(Level)} # cnoBapb CNUCKOB pe3ynbTaTOB
for £ in range(Level):
SELLER_LINES = Sellers + f
SCANNER_LINES = Scanners
print(f'_ypoBeHb ++ {f+1} ++ SELLER_LINES= {SELLER_LINES}')
for i in range(numReplica):
BOCCTaAHOB/IEHME Ha4.3Ha4yeHuin
cbpoC CNUCKOB CTAaTUCTUKMK
arrivals = defaultdict(lambda: ©)
seller waits = defaultdict(lambda: [])
scan_waits = defaultdict(lambda: [])
#
rd.seed(731 + i*numReplica + f) # ycTaHoBKa HOBOro 3epHa random
model _env() # 3anyck mogenu
if OKHO: print(f'+ {f+1} + pennuka_{i+1l} +')
experiment_ds[f].append(avg_wait(seller_waits)+avg wait(scan_waits))
if OKHO: print (experiment_ds)

[na nposepkn paboTbl mogenu 3anyckante Streamlit-npunoxkeHue:

streamlit.exe run start.py

Ona ynobcTBa 3anycka NpUAoKeHMa MOAENN HYXKHO caenaTb daiin-apabik model-app.Ink
MpoBeaunTe HECKONbKO 3KCNEPUMEHTOB C Pa3HbIMM 3HAYEHMAMM NAPAMETPOB.

3agaHue Ana camocToATeNbHOM paboTbl - A06aBbTe HOBYHO CTPAHWULY A1 CBOEro 3KCMNEPUMEHTA,
cAenaHHoro paHee B ¢ase 6.

MpuwanTe NoNy4YeHHbIN Kog Bcex dannos moaenu (py, toml, Ink) B Buae apxusa (zip) n oT4éT O
npoBeAEHHbIX aKCnepumeHTax (B daiine docx) Ha NoYTy ANA NPOBEPKM NpenogaBaTeNem.

lMpumeyaHue 1

Op[HOCTOPOHHUI AUCNepcUoHHbIM aHanm3 ANOVA ncnonb3yeT TakMe Hy/ieBble U a/ibTEPHATUBHbIE
rmnoTtesbl:

HO (HyneBas runotesa): ul = p2 = u3 = ... = uk (Bce cpegHMe 3HAYEHUSA COBOKYNMHOCTEN PaBHbI).
H1 (anbTepHaTMBHaA rMNoTesa): No KpalHel mepe, 0AHO cpeaHee 3HaYeHne BbIbOPOK OTnYaeTca

OT OCTa/ibHbIX.

Ecnu paccumtaHHoe 3HadeHune p-value mexee 0,05, TO MOXKHO OTBEPrHYTb HY/IEBYIO rMNOTE3Yy.
3TO 03HayaeT, 4YTO Yy HaC AO0CTaTOMHO OCHOBaHMI, 4TObbl yTBEPXKAATb, 4YTO cywecmsyem
CTaTUCTUYECKM 3HAUMMasA pPa3HULA MexKay BbIbopKamu.

Echn oTBepraetca HyneBas rMnotesa, 3TO 3HAYMT, YTO, NO KpPaWHEW Mepe, OAHO M3 CpeaHUX
3HAYEHUI COBOKYMHOCTM OT/IM4aeTca oT Apyrux, Ho B ANOVA He yKasaHo, Kakue cpegHue 3HauyeHusa
COBOKYMHOCTU OT/AMYaloTCA. ECAM e HY)KHO onpeaenntb TaKyk BblGOPKY, TO Heobxoanmo
BbINONHUTbL CneuunanbHble (post hoc) TecTbl, TaKKe M3BECTHble KaK TecTbl MHOMECTBEHHbIX
CpaBHEHWUI, Hanpumep, TecT TbloKM, MeToa X0/1bMa, TecT JaHHeTa.

MocKkonbKy p-value AeNCTBUTENbHO KaXKETCA 3HAYMMbIM, U MOCKOJIbKY Y HAc eCTb HECKONbKO
pa3nyHbIX GAKTOPOB, TO 06bIYHO 3anycKatoT post-hoc TecT, 4Tobbl NPOBEPUTDL, YTO Pa3HMLLA MeXAY
CPeAHUMM BCE eLe 3Ha4YMMA AaKe Noc/ie NPOBEPKM OWMOBOK NepBoro Tmmna.

MoxHo npoBectu post-hoc Tectbl ¢ nomouwblo moayna multicomp 6ubnmnotekn statsmodels,
ncnonbaya Tukey Honestly Significant Difference (Tukey HSD) Tecr.

Celtvac no NAaHy SKCNEPUMEHTA HaM 3TOIO AeN1aTb HE HYXKHO.

