
Linear-Regression

3 июня 2022 г.

1 Линейная регрессия

Начнем с обычных импортов:

[1]: %matplotlib inline
%matplotlib notebook
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np

1.1 Простая линейная регрессия

Имеем некоторую неслучайную переменную x, значение которой меняющиеся от опыта к опыту
при проведении эксперимента. Для каждого значения xk (k = 1, m) наблюдается некоторый
эффект ηk (измерения). Также известно, что измерения получаются с ошибкой и связь между
значениями неслучайной переменной xk, случайными измерениями ηk и случайной ошибкой εk

имеет вид ηk = axk + b + εk (k = 1, m; a, b ∈ R). Требуется найти значения â, b̂ наилучшим, в

1

некотором смысле, образом согласующие наблюдаемые значения yk случайной величины ηk со
значениями переменной xk.

Рассмотрим сумму квадратов наблюдаемых ошибок ek случайной величины εk:

S (a, b) =
m

∑
k=1

e2
k =

m

∑
k=1

(yk − axk − b)2 .

Значения â, b̂, удовлетворяющие равенству

S
(

â, b̂
)
= min

(a,b)∈R2
S (a, b) = min

(a,b)∈R2

m

∑
k=1

(yk − axk − b)2 ,

называют оценкой наименьших квадратов (ОНК) параметров.

ŷ = âx + b̂ – предсказанное значение y для данного x.

grad S (a, b) =

 ∂S
∂a
∂S
∂b

 =

(
0
0

)
⇔


m
∑

k=1
2 (yk − axk − b) (−xk) = 0,

m
∑

k=1
2 (yk − axk − b) (−1) = 0.

⇔

Минимум функционала S(a, b) достигается при

â =

m
m
∑

k=1
xkyk −

(
m
∑

k=1
xk

)(
m
∑

k=1
yk

)
m

m
∑

k=1
x2

k −
(

m
∑

k=1
xk

)2 , b̂ =
1
m

(
m

∑
k=1

yk − â
m

∑
k=1

xk

)
.

Эквивалентные формулы

â =

m
∑

k=1

(
xk − X

) (
yk −Y

)
m
∑

k=1

(
xk − X

)2
, b̂ = Y− âX, где X =

1
m

n

∑
k=1

xk, Y =
1
m

n

∑
k=1

yk.

Тогда предсказанное значение ŷ = â
(
x− X

)
+ Y.

1.1.1 Пример

Рассмотрим следующие данные, распределенные около прямой y = 2x− 5:

[2]: m=50

rng = np.random.RandomState(81)
x = 10 * rng.rand(m)
y = 2 * x - 5 + rng.randn(m)
plt.figure()
plt.scatter(x, y)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

2

[2]: <matplotlib.collections.PathCollection at 0x1e6d0b004f0>

[3]: C=np.cov(x,y)

a=C[0,1]/C[0,0]
b=np.mean(y)-a*np.mean(x)

xfit = np.linspace(0, 10, 10)
yfit = a*xfit + b

print(f"Model coef: a={a}")
print(f"Model intercept: b={b}")

plt.figure()
plt.scatter(x, y, color='green')
plt.plot(xfit, yfit)

Model coef: a=1.9681862451970724
Model intercept: b=-4.7583874782991815

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[3]: [<matplotlib.lines.Line2D at 0x1e6d0b62340>]

В sklearn есть несколько классов, реализующих линейную регрессию: * LinearRegression
— “классическая” линейная регрессия с оптимизацией MSE. * Ridge — линейная регрессия с
оптимизацией MSE и `2-регуляризацией * Lasso — линейная регрессия с оптимизацией MSE
и `1-регуляризацией

У моделей из sklearn есть методы fit и predict. Первый принимает на вход обучающую
выборку и вектор целевых переменных и обучает модель, второй, будучи вызванным после
обучения модели, возвращает предсказание на выборке.

[4]: from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit = np.linspace(0, 10, 10)
yfit = model.predict(xfit[:, np.newaxis])

plt.figure()
plt.scatter(x, y, color='green')
plt.plot(xfit, yfit)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

[4]: [<matplotlib.lines.Line2D at 0x1e6d2272d60>]

Подбираемые параметры модели (в библиотеке Scikit-Learn всегда содержат в конце знак
подчеркивания) включают угловой коэффициент a и точку пересечения с осью ординат b. В
данном случае соответствующие параметры – coef_ и intercept_:

[5]: print(f"Model coef: a={model.coef_[0]}")
print(f"Model intercept: b={model.intercept_}")

Model coef: a=1.9681862451970729
Model intercept: b=-4.758387478299183

Полученные результаты очень близки к исходной зависимости, как и должно быть.

1.2 Многомерная линейная регрессия

Дано: ηk = x1kw1 + · · ·+ xnkwn + εk =
−→x T

k
−→w + εk (k = 1, m) ⇔ −→η = XT−→w +−→ε

1. −→η = (η1, . . . , ηm)T – случайный вектор, состоящий из m ∈N;
2. X =

(−→x 1, . . . ,−→x m
)
– матрица из m столбцов −→x k (k = 1, m), где −→x k – последовательность

неслучайных векторных переменных (факторов);
3. −→ε = (ε1, . . . , εm)T – вектор, состоящий из m случайных ошибок εk (k = 1, m); Mεk = 0;

Dεk = σ2 > 0; M
(
ε iε j
)
= 0 (i = 1, m, j = i + 1, m) (случайные ошибки некоррелированы);

4. −→w = (w1, . . . , wn)T – вектор неизвестных неслучайных параметров (весов).

Если выполняются условия 1 − 4, то говорят, что имеет место модель линейной регрессии;
w1, . . . , wn – коэффициенты регрессии; σ2 – остаточная дисперсия.

1.2.1 Пример

В простой регрессии: - −→η = (η1, . . . , ηm)T – наблюдения; - −→x k = (xk 1)T – факторы; - −→w =
(a b)T – неизвестные параметры.

ηk =
−→x T

k
−→w + εk =

(
xk 1

) (a
b

)
+ εk = axk + b + εk

1.2.2 Свойства

1. Mηk = M
{−→x T

k
−→w
}
+ Mεk =

−→x T
k
−→w
(
k = 1, m

)
2. Dηk = M

[
(ηk −Mηk)

2
]
= M

[(−→x T
k
−→w + εk −−→x T

k
−→w
)2
]
= Mε2

k = Dεk = σ2 (k = 1, m
)
⇒

D−→η = D−→ε = M
[−→ε −→ε T] = σ2 · Em

1.2.3 Замечание

В более общем случае возможны корреляции между ошибками, а следовательно и наблюде-
ниями, т. о. D−→ε = M

[−→ε −→ε T] = σ2 · G.

4

Если ввести замену переменных
−→
ζ = G−1/2−→η ⇒ - Математическое ожидание

−→
ζ : M

−→
ζ =

M
[
G−1/2−→η

]
= G−1/2M−→η = G−1/2XT−→w , XG−1/2 – новая матрица факторов; - Матрица кова-

риаций
−→
ζ :

D
−→
ζ =M

[(−→
ζ −M

−→
ζ
) (−→

ζ −M
−→
ζ
)T
]
=

=M
[

G−1/2 (−→η −M−→η
) (−→η −M−→η

)T G−1/2
]
=

=G−1/2 (D−→η)G−1/2 = G−1/2 (σ2 · G
)

G−1/2 = σ2 · Em

⇒ Заменой переменных
−→
ζ = G−1/2−→η свели задачу к задаче с некоррелированными ошибкам,

а значит модель 1− 4 достаточно общая и заслуживает подробного рассмотрения.

1.2.4 Метод наименьших квадратов (МНК)

Разработан К. Гауссом (1809 г.) и получил теоретико-вероятностное обоснование А. Марковым
(1900 г.). Метод применяется для нахождения весов −→w = (w1, . . . , wn)T в задаче линейной
регрессии.

Рассмотрим квадратичную форму

S(−→w) = −→e T−→e = (−→y − XT−→w)T(−→y − XT−→w),

которую называют функционалом МНК и −̂→w = arg min
−→w

S(−→w).

Необходимые условия экстремума:

grad S(−→w) = 0, S(−→w) = −→y T−→y −−→y TXT−→w −−→w TX−→y +−→w TXXT−→w .

Величина
(−→y TXT−→w

)T
= −→w TX−→y – скалярная ⇒

−→y TXT−→w =
(−→y TXT−→w

)T
= −→w TX−→y

Тогда S(−→w) = −→y T−→y − 2−→y TXT−→w + −→w TXXT−→w ⇒ grad S(−→w) = −2X−→y + 2XXT−→w = 0 ⇔
уравнению XXT−→w = X−→y , называемого системой нормальных уравнений МНК.

Теорема. let −̂→w – произвольное решение системы нормальных уравнений⇒ min−→w
S(−→w) = S(−̂→w)

и этот минимум одинаков для всех решений системы нормальных уравнений.

if det(XXT) 6= 0 ⇒ оценка МНК единственная и определяется равенством −̂→w = (XXT)−1X−→y .

/ S(−→w) =(−→y − XT−→w)T(−→y − XT−→w) =

=
(
(−→y − XT−̂→w) + XT(−̂→w −−→w)

)T (
(−→y − XT−̂→w) + XT(−̂→w −−→w)

)
=

=(−→y − XT−̂→w)T(−→y − XT−̂→w) + 2(−̂→w −−→w)TX(−→y − XT−̂→w)+

+ (−̂→w −−→w)TXXT(−̂→w −−→w) =

=S(−̂→w) + 2(−̂→w −−→w)T(X−→y − XXT−̂→w) + (−̂→w −−→w)TXXT(−̂→w −−→w) =

=S(−̂→w) + (−̂→w −−→w)TXXT(−̂→w −−→w).

5

Поскольку XXT неотрицательно определена ⇒ S(−→w) ≥ S(−̂→w) ⇒ минимум S(−→w) достигается
в −̂→w и одинаков для ∀ решения нормальных уравнений⇒ любое решение системы нормальных
уравнений является оценкой МНК. Для невырожденной XXT система нормальных уравнений
имеет единственное решение −̂→w = (XXT)−1X−→y . .

1.2.5 Пример

ηk = w0 + w1x1k + w2x2k + εk

с несколькими величинами xk. Геометрически это подобно подбору плоскости для точек в трех
измерениях.

[6]: np.random.seed(32)
X = np.random.uniform(0, 10, size=(50,2))

y = 0.5 + np.dot(X, [-2.0, 1.5]) + np.random.normal(scale=1.0, size=X.shape[0])

Возможности LinearRegression позволяют работать с многомерными линейными моделями.

[7]: from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)
model.fit(X, y)
print(model.intercept_)
print(model.coef_)

0.5790960288296627
[-1.91567403 1.41453722]

[8]: from mpl_toolkits.mplot3d import Axes3D

t = np.linspace(0, 10, 50)
x_fit_1, x_fit_2 = np.meshgrid(t, t)

x_fit = np.column_stack((x_fit_1.ravel(),x_fit_2.ravel()))

y_fit = model.predict(x_fit)

fig = plt.figure(figsize=(4,4))
ax = Axes3D(fig, auto_add_to_figure=False)
#ax.plot_trisurf(x_fit[:,0], x_fit[:,1], y_fit, alpha=0.3, cmap='inferno')
ax.plot_surface(x_fit_1, x_fit_2, y_fit.reshape(x_fit_1.shape), linewidth=0,␣

↪→rstride=10, cstride=10, alpha=0.3, cmap='rainbow')
ax.scatter(X[:,0], X[:,1], y, color='black', marker='*')
fig.add_axes(ax)

ax.elev = 15
ax.azim = 45

6

plt.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Линейная регрессия может использоваться для аппроксимации наших данных прямыми, плос-
костями и гиперплоскостями. Складывается впечатление, что этот подход ограничивается
лишь строго линейными отношениями между переменными, но, если проявить изобретатель-
ность, возможности оказываются гораздо шире.

1.3 Регрессия в спрямляющем пространстве

Один из трюков, позволяющих приспособить линейную регрессию к нелинейным отношениям
между переменными, – функциональное преобразование данных. Идея состоит в том, чтобы
взять многомерную линейную модель:

y = w1z1 + . . . + wNzN

и подставить в нее zj = ϕj(
−→x) (j = 1, N), где ϕj : Rn → R – некоторая функция, выполняющая

преобразование факторов −→x ⇒

y = w1ϕ1(
−→x) + . . . + wN ϕN(

−→x) .

В итоге получается модель в N-мерном пространстве, которое называют спрямляющим.

Соответствующую задачу регрессии теперь можно переформулировать следующим образом:
ηk = ϕ1(

−→x k)w1 + · · ·+ ϕN(
−→x k)wN + εk (k = 1, m) ⇔ −→η = Φ(X)−→w +−→ε

В частности, для одномерных факторов x, если ϕk(x) = xk−1, получаем полиномиальную
регрессию:

y = a0 + a1x + . . . + aN−1xN−1

Обратим внимание, что модель по-прежнему остается линейной − линейность относится к
тому, что коэффициенты wk никогда не умножаются и не делятся друг на друга. Фактиче-
ски мы взяли наши одномерные значения x и выполнили проекцию их на более многомерное
пространство, так что с помощью линейной аппроксимации мы можем теперь отражать более
сложные зависимости между x и y.

1.3.1 Полиномиальные базисные функции

Данное полиномиальное преобразование настолько удобно, что было встроено в библиотеку
Scikit-Learn в виде преобразователя PolynomialFeatures:

[9]: from sklearn.preprocessing import PolynomialFeatures
x = np.array([2, 3, 4])
poly = PolynomialFeatures(2, include_bias=True)
display(x[:, np.newaxis])
display(poly.fit_transform(x[:, np.newaxis]))

7

array([[2],
[3],
[4]])

array([[1., 2., 4.],
[1., 3., 9.],
[1., 4., 16.]])

Преобразователь превратил наш одномерный массив в трехмерный путем возведения каждого
из значений в степень. Далее можно будет пользоваться этим преобразователем для регресси-
онной модели.

После такого преобразования можно воспользоваться линейной моделью для подбора намного
более сложных зависимостей между величинами x и y. Например, рассмотрим зашумленную
синусоиду

[10]: from sklearn.linear_model import LinearRegression

np.random.seed(36)
x = np.linspace(0, 1, 100)
y = np.cos(1.5 * np.pi * x)

x_train = np.random.uniform(0, 1, size=30)
y_train = np.cos(1.5 * np.pi * x_train) + np.random.normal(scale=0.1,␣

↪→size=x_train.shape)

from sklearn.preprocessing import PolynomialFeatures
fig, axs = plt.subplots(figsize=(16, 4), ncols=3)
for i, degree in enumerate([1, 4, 30]):

X_train = PolynomialFeatures(degree, include_bias=True).
↪→fit_transform(x_train[:, np.newaxis])

X = PolynomialFeatures(degree, include_bias=True).fit_transform(x[:, np.
↪→newaxis])

w=np.dot(np.linalg.inv(np.matmul(X_train.T,X_train)),np.dot(X_train.
↪→T,y_train))

y_pred=np.dot(X,w)

axs[i].plot(x, y, label="Real function")
axs[i].scatter(x_train, y_train, label="Data")
axs[i].plot(x, y_pred, label="Prediction")
if i == 0: axs[i].legend()
axs[i].set_title("Degree = %d" % degree)
axs[i].set_xlabel("x")
axs[i].set_ylabel("$f(x)$")
axs[i].set_ylim(-2, 2)

print(f"Degree = {degree}")
print(f"Coeffs = {w}")

8

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Degree = 1
Coeffs = [0.77571792 -1.96635465]
Degree = 4
Coeffs = [0.96001923 0.0697848 -14.40575795 18.10888186 -4.68598787]
Degree = 30
Coeffs = [8.63945778e-01 1.68288699e+01 -3.54481232e+02 2.68226575e+03
-1.02001221e+04 2.26756875e+04 -4.03703594e+04 5.36838125e+04
4.94457656e+04 -3.26019375e+05 3.26033844e+05 1.95884750e+05

-2.39219250e+05 -5.84798500e+05 7.02292875e+05 1.27272875e+05
-1.28943375e+05 3.26927375e+05 -1.87051919e+06 1.20632300e+06
7.47456500e+05 2.55077250e+05 -1.44563600e+06 2.41653600e+06

-5.15512250e+06 6.22653350e+06 -4.04926425e+06 1.44199575e+06
-1.55871844e+06 2.39541267e+06 -1.08729412e+06]

Оформим функцию для дальнейшего использования с моделями sklearn

[11]: def fit_and_draw(model):
np.random.seed(36)
x = np.linspace(0, 1, 100)
y = np.cos(1.5 * np.pi * x)

x_train = np.random.uniform(0, 1, size=30)
y_train = np.cos(1.5 * np.pi * x_train) + np.random.normal(scale=0.1,␣

↪→size=x_train.shape)

from sklearn.preprocessing import PolynomialFeatures
fig, axs = plt.subplots(figsize=(16, 4), ncols=3)
for i, degree in enumerate([1, 4, 30]):

X_train = PolynomialFeatures(degree, include_bias=False).
↪→fit_transform(x_train[:, np.newaxis])

X = PolynomialFeatures(degree, include_bias=False).fit_transform(x[:, np.
↪→newaxis])

regr = model.fit(X_train, y_train)
y_pred = regr.predict(X)

axs[i].plot(x, y, label="Real function")
axs[i].scatter(x_train, y_train, label="Data")
axs[i].plot(x, y_pred, label="Prediction")
if i == 0:

axs[i].legend()
axs[i].set_title("Degree = %d" % degree)
axs[i].set_xlabel("x")
axs[i].set_ylabel("$f(x)$")
axs[i].set_ylim(-2, 2)

9

print(f"Degree = {degree}")
print(f"Coeffs = {model.coef_}")
print(f"Intercept = {model.intercept_}")

[12]: from sklearn.linear_model import LinearRegression

poly_model = LinearRegression()
fit_and_draw(poly_model)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Degree = 1
Coeffs = [-1.96635465]
Intercept = 0.7757179200527622
Degree = 4
Coeffs = [0.0697848 -14.40575795 18.10888186 -4.68598787]
Intercept = 0.960019225440941
Degree = 30
Coeffs = [-4.52840244e+03 4.57451069e+05 -1.96388216e+07 4.52137630e+08
-6.41571458e+09 6.07784252e+10 -4.02177363e+11 1.90049292e+12
-6.42961320e+12 1.52385081e+13 -2.36149011e+13 1.88907611e+13
3.53909083e+12 -1.96426490e+13 3.36012973e+12 1.80752089e+13

-1.78125292e+12 -1.79277897e+13 -4.30295114e+12 1.56381708e+13
1.19344013e+13 -7.79130765e+12 -1.77282172e+13 -2.62017013e+12
1.64792282e+13 1.26777276e+13 -1.29722474e+13 -1.80761176e+13
2.16364418e+13 -6.13557594e+12]

Intercept = 9.196001896042334

С помощью линейной модели, используя полиномиальные базисные функции седьмого поряд-
ка, мы получили прекрасную аппроксимацию этих нелинейных данных. Применение базисных
функций в нашей линейной модели делает ее намного гибче, но также и быстро приводит к
переобучению. Например, если выбрать слишком высокую степень полинома, то мы получаем
неудачное приближение.

1.4 Оптимальность оценок МНК

Теорема. let XXT – невырождена ⇒ оценка МНК −̂→w = (XXT)−1X−→η : 1. несмещенная; 2. эф-
фективная в классе линейных несмещенных оценок −→w ; 3. Матрица ковариаций оценки МНК:
D(−̂→w) = σ2(XXT)−1.

/ 1. Несмещенность:

M−̂→w =M
[
(XXT)−1X−→η

]
= M

[
(XXT)−1X

(
XT−→w +−→ε

)]
=

=(XXT)−1XXT−→w + (XXT)−1XXT M−→ε = −→w .

10

2. Эффективная оценка в классе линейных несмещенных оценок означает следующее. let−→
ζ = L−→η – произвольная линейная несмещенная оценка −→w . Т. е. M

−→
ζ = LM−→η =

LM
[
XT−→w +−→ε

]
= LXT−→w = −→w и Dζi > Dŵi (i = 1, n). Значит, несмещенность

−→
ζ ⇔ LXT = E.

Для доказательства эффективности, рассмотрим D
−→
ζ = LD−→η LT = σ2LLT.

LLT =(L− (XXT)−1X + (XXT)−1X)(L− (XXT)−1X + (XXT)−1X)T =

=(L− (XXT)−1X)(L− (XXT)−1X)T + (L− (XXT)−1X)XT(XXT)−1+

+ (XXT)−1X(LT − XT(XXT)−1) + (XXT)−1X
[
(XXT)−1X

]T
=

=(L− (XXT)−1X)(L− (XXT)−1X)T + (LXT − E)(XXT)−1+

+ (XXT)−1(XLT − E) + (XXT)−1XXT(XXT)−1 =

=
{

LXT = E, XLT = E
}
=

=(L− (XXT)−1X)(L− (XXT)−1X)T + (XXT)−1 .

Оба слагаемых имеют вид AAT ⇒ у каждого слагаемого неотрицательные диагональные эле-
менты, сумма которых и представляет собой Dζi (i = 1, n) и имеют наименьшие значения при

L = (XXT)−1X. Соответствующая эффективная оценка
−̂→
ζ = (XXT)−1X−→η , совпадающая с

оценкой МНК.

3. Матрица ковариаций оценки МНК:

D−̂→w =(XXT)−1XD(−→η)XT(XXT)−1 = (XXT)−1X(σ2E)XT(XXT)−1 =

=σ2(XXT)−1 ..

1.5 Оценка остаточной дисперсии

1.5.1 Запись квадратичной формы через след

let z = (z1, . . . , zn)T; A =


. . . aij . . .
.

, aij = aji (i = 1, n, j = 1, n)

zT Az =
n

∑
i=1

n

∑
j=1

ziaijzj =
n

∑
i=1

[
n

∑
j=1

aij(zjzi)

]
=

=

A(z · zT) =


.

. . .
n
∑

j=1
aijzjzk . . .

.


 =

=tr(AzzT)

Из доказательства теоремы о минимизации квадратичной формы МНК S(−→w) решением си-
стемы нормальных уравнений:

S(−→w) = S(−̂→w) + (−̂→w −−→w)TXXT(−̂→w −−→w)⇒

11

MS(−→w) = MS(−̂→w) + M
[
(−̂→w −−→w)TXXT(−̂→w −−→w)

]
С другой стороны, по опредению

MS(−→w) = M
[−→ε T−→ε

]
=


−→ε T−→ε =

m
∑

i=1
ε2

i ; M [ε i] = 0; D [ε i] = σ2

⇒ M
[−→ε T−→ε

]
=

m
∑

i=1
M
[
ε2

i
]
=

m
∑

i=1
D [ε i] = mσ2

 = mσ2

Рассмотрим

M
[
(−̂→w −−→w)TXXT(−̂→w −−→w)

]
=M

[
tr
(

XXT(−̂→w −−→w)(−̂→w −−→w)T
)]

=

=tr
(

XXT M
[
(−̂→w −−→w)(−̂→w −−→w)T

])
Оценка −̂→w – несмещенная⇒ M

[−̂→w] = −→w ⇒ D
[−̂→w] = M

[
(−̂→w −−→w)(−̂→w −−→w)T

]
= σ2(XXT)−1

⇒

M
[
(−̂→w −−→w)TXXT(−̂→w −−→w)

]
= σ2tr

(
XXT(XXT)−1

)
= trE · σ2 = nσ2 .

В итоге, имеем
mσ2 = MS(−̂→w) + nσ2 ⇒ MS(−̂→w) = (m− n)σ2 .

Т. о. if в качестве оценки σ2 выбрать σ̂2 = S(−̂→w)
m−n , то она будет несмещенной оценкой для σ2:

M
[
σ̂2] = MS(−̂→w)

m− n
=

(m− n)σ2

m− n
= σ2 .

1.6 Регуляризация

1.6.1 Гребневая регрессия (L2-регуляризация)

Вероятно, самый часто встречающийся вид регуляризации − гребневая регрессия (ridge
regression), или L2-регуляризация (L2-regularization), также иногда называемая регуляриза-
цией Тихонова (Tikhonov regularization). Она заключается в наложении штрафа на сумму
квадратов (евклидовой нормы) коэффициентов модели. В данном случае штраф для модели
будет равен:

P = α
n

∑
k=1

w2
k ,

где α − свободный параметр, служащий для управления уровнем штрафа. Этот тип модели
со штрафом встроен в библиотеку Scikit-Learn в виде оценивателя Ridge:

[13]: from sklearn.linear_model import Ridge

poly_model = Ridge(alpha=0.5e-4)
fit_and_draw(poly_model)

<IPython.core.display.Javascript object>

12

<IPython.core.display.HTML object>

Degree = 1
Coeffs = [-1.96631031]
Intercept = 0.7756999136786734
Degree = 4
Coeffs = [-0.64203823 -10.7073901 11.8185108 -1.3476647]
Intercept = 0.986796508792788
Degree = 30
Coeffs = [-0.82610999 -8.3193884 4.56116154 4.05002638 1.76531704
0.24447651
-0.46523757 -0.70111183 -0.71581948 -0.64050122 -0.53181246 -0.41248169
-0.29289016 -0.17964427 -0.07787892 0.00865097 0.07785544 0.12937172
0.16434367 0.1850294 0.19436066 0.19554015 0.1917205 0.18577774
0.18017253 0.17688405 0.17739829 0.18273379 0.19349055 0.20991089]

Intercept = 0.9820313158728272

Параметр α служит для управления сложностью получаемой в итоге модели. В предельном
случае α → 0 мы получаем результат, соответствующий стандартной линейной регрессии; в
предельном случае α → ∞ будет происходить подавление любого отклика модели. Достоин-
ства гребневой регрессии включают, помимо прочего, возможность ее эффективного расчета
– вычислительные затраты практически не превышают затрат на расчет исходной линейной
регрессионной модели.

1.6.2 Лассо-регрессия (L1 регуляризация)

Еще один распространенный тип регуляризации – так называемая лассо-регуляризация, вклю-
чающая штрафование на сумму абсолютных значений (L1-норма) коэффициентов регрессии:

P = α
n

∑
k=1
|wn| .

Хотя концептуально эта регрессия очень близка к гребневой, результаты их могут очень сильно
различаться. Например, по геометрическим причинам лассо-регрессия любит разреженные
модели, то есть она по возможности делает коэффициенты модели равными нулю.

Посмотреть на поведение этой регрессии мы можем, воспроизведя график, но с использовани-
ем коэффициентов, нормализованных с помощью нормы L1:

[14]: from sklearn.linear_model import Lasso

poly_model = Lasso(alpha=1.0e-4, max_iter=10000)
fit_and_draw(poly_model)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Degree = 1
Coeffs = [-1.9650018]

13

Intercept = 0.7751684734880687
Degree = 4
Coeffs = [-1.92815017 -4.16751937 0.88096454 4.3820449]
Intercept = 1.036684161709409
Degree = 30
Coeffs = [-1.72864786 -4.51859608 0. 5.91868208 0. 0.
-0. -0. -0. -0.03492571 -0.44330999 -0.19981369
-0. -0. -0. -0. -0. -0.
-0. -0. -0. 0. 0. 0.
0. 0. 0. 0. 0. 0.]

Intercept = 1.0230776740430572

При использовании штрафа лассо-регрессии большинство коэффициентов в точности равны
нулю, а функциональное поведение моделируется небольшим подмножеством из имеющихся
базисных функций. Как и в случае гребневой регуляризации, параметр α управляет уровнем
штрафа и его следует определять путем перекрестной проверки.

1.6.3 Гауссовы базисные функции

Можно использовать и другие базисные функции. Например, один из часто применяющихся
примемов – обучение модели, представляющей собой сумму не полиномиальных, а Гауссовых
базисных функций.

Эти Гауссовы базисные функции не встроены в библиотеку Scikit-Learn, но мы можем напи-
сать для их создания пользовательский преобразователь, как показано ниже (преобразователи
библиотеки Scikit-Learn реализованы как классы языка Python; разработка пользовательско-
го преобразователя – отличный способ разобраться с их созданием):

Φ(x) = e−
1
2 (

x−m
σ)

2

[15]: rng = np.random.RandomState(8)
x = 10 * rng.rand(50)
y = np.sin(x) + 0.1 * rng.randn(50)

[16]: from sklearn.base import TransformerMixin

class GaussianFeatures(TransformerMixin):
"""Uniformly spaced Gaussian features for one-dimensional input"""

def __init__(self, N, width_factor=2.0):
self.N = N
self.width_factor = width_factor

@staticmethod
def _gauss_basis(x, y, width):

arg = (x - y) / width
return np.exp(-0.5 * arg ** 2)

14

def fit(self, X, y=None):
create N centers spread along the data range
self.centers_ = np.linspace(X.min(), X.max(), self.N)
self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0])
return self

def transform(self, X):
return self._gauss_basis(X, self.centers_, self.width_)

X_train = GaussianFeatures(20).fit_transform(x[:,np.newaxis])
gauss_model = LinearRegression()
gauss_model.fit(X_train, y)

xfit = np.linspace(0, 10, 1000)
X_fit=GaussianFeatures(20).fit_transform(xfit[:,np.newaxis])
yfit = gauss_model.predict(X_fit)

plt.figure()
plt.scatter(x, y)
plt.plot(xfit, yfit)
plt.xlim(0, 10)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[16]: (0.0, 10.0)

Мы рассмотрели данный пример лишь для того, чтобы подчеркнуть, что в полиномиальных
базисных функциях нет никакого колдунства. Если у вас есть какие-то априорные сведения о
процессе генерации ваших данных, исходя из которых есть основания полагать, что наиболее
подходящим будет тот или иной набор базовых функций, – то можно использовать его.

15

	Линейная регрессия
	Простая линейная регрессия
	Пример

	Многомерная линейная регрессия
	Пример
	Свойства
	Замечание
	Метод наименьших квадратов (МНК)
	Пример

	Регрессия в спрямляющем пространстве
	Полиномиальные базисные функции

	Оптимальность оценок МНК
	Оценка остаточной дисперсии
	Запись квадратичной формы через след

	Регуляризация
	Гребневая регрессия (L2-регуляризация)
	Лассо-регрессия (L_1 регуляризация)
	Гауссовы базисные функции

