
ИУ-6

Компьтерные 

системы и сети

Нелинейная оптимизация.

Метод опорных векторов (Support Vector Machines).
Нелинейная оптимизация.

Тверская Е. С.
e_tverskaya@bmstu.ru

Московский государственный технический университет им. Н. Э. Баумана
(национальный исследовательский университет)

Москва, 2025

Тверская Е. С.e_tverskaya@bmstu.ru Метод опорных векторов (Support Vector Machines). Нелинейная оптимизация.



Нелинейная оптимизация.
Прямая задача оптимизации.
Двойственная задача оптимизации
Теорема Куна-Таккера

Нелинейная оптимизация.
Прямая задача оптимизации.

ИУ-6

Компьтерные 

системы и сети

Пусть заданы вещественные функции: f(w), ϕi(w) и gj(w), где w ∈ Rn,
i = 1,m, j = 1, k. Для простоты и не нарушая общности изложения, положим
k = m.

Постановка задачи.

Необходимо найти

inf
w
f(w);

gi(w) 6 0, i = 1,m;

ϕi(w) = 0, i = 1,m.

(1)

Область допустимых решений

Ω = {w ∈ Rn : g(w) 6 0, ϕ(w) = 0} .

Определение

Решение задачи оптимизации – это вектор w∗ ∈ Ω ⊂ Rn такой, что не
существует w ∈ Rn такого, что f(w) < f(w∗).

Данное определение дает понятие глобального минимума. Если w∗ ∈ U ⊂
Ω, то тогда говорят о локальном минимуме, где U = U(w∗).
Функция f назвается целевой функцией.
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Определение

Функция f называется выпуклой, если для всех w, u ∈ Rn и 0 6 λ 6 1
выполнено

f(λw + (1− λ)u) 6 λf(w) + (1− λ)f(u)

Если имеются только ограничения типа равенств ϕ(w) = 0, то записы-
вают функцию Лагранжа

L(w, β) = f(w) + βϕ(w).

И необходимые условия минимума записываются как
∂L(w, β)

∂w
= 0,

∂L(w, β)

∂β
= 0

Если L(w, β) – выпуклая функция, то эти условия являются и доста-
точными.
Если рассматривается задача общего вида (1) то функция Лагранжа за-
писывается как

L(w, β) = f(w) + βϕ(w) + αg(w).
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Часто, двойственная задача оптимизации проще, чем прямая, так
как имеет более простые граничные условия
Пусть

Θ(α, β) = inf
w
L(α, β,w).

Двойственная задача оптимизации заключается в том, чтобы найти

max
α,β

Θ(α, β), αi > 0. (2)

Теорема

Слабая теорема двойственности. Пусть вектор w удовлетворяет
условиям g(w) 6 0 и ϕ(w) = 0 прямой задачи оптимизации. В част-
ности, он может быть решением прямой задачи оптимизации, а α, β –
решение двойственной задачи (2). Тогда f(w) > Θ(α, β).

Доказательство.

Θ(α, β) = inf
u
L(u, α, β) 6 L(w,α, β) = f(w) + αg(w) + βh(w) 6 f(w),

так как αg(w) 6 0 (α > 0) и h(w) = 0.
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Следствие 1.

Значение решения двойственной задачи не превосходи значения решения пря-
мой задачи:

sup {Θ(α, β) : α > 0} 6 inf {f(w) : g(w) 6 0, ϕ(w) = 0} .

Следствие 2.

Достаточные условия того, что решения прямой и двойственной
задач совпадают. Если f(w∗) = Θ(α∗, β∗), где α∗ > 0, g(w∗) 6 0,
ϕ(w∗) = 0, то w∗ и α∗, β∗ – решения прямой и двойственной задачи, со-
ответсвенно. Причем, в этом случае, также α∗g(w∗) = 0.

Определение

Функция h(w) называется аффинной, если она имеет вид Aw + b, где A –
некоторая матрица.

Теорема

Пусть Ω ⊂ R – область допустимых решений (выпуклое множество). Функции
h и g – аффинные. Тогда значение прямой и двойственной задач совпадают.
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Теорема

Пусть Ω ⊂ R – область допустимых решений (выпуклое множество). Функции
h и g – аффинные. Тогда w∗ является решением прямой задачи

inf f(w), w ∈ Ω,

g(w) 6 0, h(w) = 0

тогда и только тогда, когда существует пара α∗ и β∗ такая, что

∂L(w∗, α∗, β∗)

∂w
= 0.

∂L(w∗, α∗, β∗)

∂β
= 0, (3)

α∗
i gi(w

∗) = 0, i = 1,m, (4)

gi(w
∗) 6 0, α∗

i > 0, i = 1,m.
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Условие (3) задает условие достижения максимума по β линейной по α и
β функции L(w∗, α, β). Данное условие эквивалентно условию h(ω) =
0.
Условия максимума L(w∗, α, β) по α содержатся в (4), так как при
α∗ > 0, каждое такое условие превращается в gi(w∗) = 0 (это эк-
вивалентно ∂L(w∗,α∗,β∗)

∂αi
= 0), а при g(w∗) < 0 в точке максимума

должно выполняться α∗ = 0
Условие (4) называется условием Каруша-Куна-Таккера.
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