
An Introduction to the MISD Technology
Aleksey Popov

Bauman Moscow State Technical University,
Moscow, Russia

alexpopov@bmstu.ru

Abstract
The growth of data volume, velocity, and variety will

be the global IT challenges in the next decade. To over-
come performance limits, the most effective innovations
such as cognitive computing, GPU, FPGA acceleration,
and heterogeneous computing have to be integrated with
the traditional microprocessor technology. As the funda-
mental part of most computational challenges, the dis-
crete mathematics should be supported both by the com-
puter hardware and software. But for now, the optimiza-
tion methods on graphs and big data sets are generally
based on software technology, while hardware support
is promising to give a better result.

In this paper, the new computing technology with di-
rect hardware support of discrete mathematic functions
is presented. The new non-Von Neumann microproces-
sor named Structure Processing Unit (SPU) to perform
operations over large data sets, data structures, and
graphs was developed and verified in Bauman Moscow
State Technical University. The basic principles of SPU
implementation in the computer system with multiple in-
struction and single data stream (MISD) are presented.
We then introduce the programming techniques for such
a system with CPU and SPU included. The experimen-
tal results and performance tests for the universal MISD
computer are shown.

1. Introduction

The Internet of Things, social media, and mobile de-
vices generate Exabyte’s of unstructured data, which are
extremely hard to be stored and analyzed with the com-
monly used computing technology [1]. Despite the fact
that the performance of multicore CPUs achieved a great
milestone, the conceptual and technological problems
became manifest for modern computers as current chal-
lenges. The turning point came when single core perfor-
mance started going backwards and showed limitations
in further development [2]. Such initiatives as hetero-
geneous architectures, OpenPOWER [3] or HSA Foun-
dation [4], allows one to create a high performance sys-
tem with different types of accelerators. However, the

set of acceleration cores is still limited from the GPUs
and cryptography accelerators to digital signal proces-
sors and graphic accelerators. Let us focus on the im-
portant issues of discrete optimization, which is widely
used in the most computational challenges, but is not
fully supported by the acceleration technology.

Discrete optimization applications arise in ap-
plied science (e.g., bioinformatics, chemistry, statistics,
physics, and economics) and in industries (e.g., telecom-
munication, manufacturing, retail, and banking). There-
fore, it is important to note the disadvantage of univer-
sal computing when discrete optimization could be only
processed through multiple calls of primitive arithmetic
operations. There is still no discrete mathematic units
in current computers to operate over data sets directly.
All this confirms the importance of effective hardware
to process big data sets.

The purpose of this paper is to shortly describe the
fundamentals and implementation results of a princi-
pally new computing system with multiple instruction
streams and a single data stream (MISD under Flynn’s
Taxonomy), which were developed and implemented at
Bauman Moscow State Technical University.

The rest of this paper is structured as follows. In
the next section, we present some technical arguments
to implement the special hardware accelerator for dis-
crete optimization. Section 3 presents the fundamentals
of MISD system operations. The micro-architecture and
instruction set of the new special-purpose microproces-
sor (called the Structure Processing Unit or SPU) will be
introduced in Section 4. Since the SPUs instruction set
differs much from generic CPUs, it was required to mod-
ify algorithms in the parallel MISD form and to imple-
ment a special compiling technology. Section 5 presents
the hierarchical nesting principle of computer systems
architecture. The programming techniques for the new
architecture is briefly introduced in Section 6, and the
example of the useful MISD algorithm is shown in Sec-
tion 7. Implementation features and experimental results
are presented in Section 8. Finally, Section 9 provides
the preferable implementation and conclusions, includ-
ing future research.
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2. Background

The fundamentals of discrete mathematics are imple-
mented in computing technology as functions to store
and operate over multiple discrete structures. A number
of data structures such as arrays, hashes, lists, and trees
have been developed to accelerate algorithms [6, 7].
B+trees, for example, are speeding up the data retrieval
in databases by managing indices in a more effective
manner [8].

It should be noted that computational problems for
most data structures are caused by CPU pipelines and
slow memory subsystem. Nowadays, microprocessors
and memory devices are developed to effectively per-
form sequential memory access. But the random access
for lists and trees raises much more cache misses and
page faults than the sequential one for vectors or arrays.
In addition, lists and trees use pointers to follow from
one element to another. Only after passing the pointer
through the CPU pipeline will the next address become
known to the Memory Management Unit [9]. On the
other hand, the CPU’s speed is growing at a much faster
rate (60% per year) than the memory (10% per year)
[10]. This causes penalty of the pipeline to wait for re-
quired operands. So, the access to the sequential mem-
ory’s addresses is about thirty times faster than to ran-
dom addresses.

Some recent works addressed the development
of load/store accelerators [11, 12], and Field-
Programmable Gate Arrays (FPGA) are often used
as a hardware platform for such an application. In
contrast with the processor pipeline, FPGAs allow the
implementation of a massively parallel infrastructure
to reach an optimized computing speed [13, 14, 15].
But the functionality of ”key-value” accelerators, which
have been developed for a particular algorithm, is
always restricted. The extended instruction set of such
a system is limited to a few basic operations over data
structures, such as search, insert, or delete values by
their keys. At the same time, discrete mathematic
operations are required to support such operations
as slicing, union, intersect, or complement. Other
useful operations are the following: the traversal of
data structure elements according to their sequence;
maximum or minimum search; the cardinality operation
to understand the number of elements in the set; search
of a neighbor; and others. This set of operations is
required in many real-life algorithms like Dijkstra’s
shortest path search or Kruskal’s minimum spanning
tree search. Next, we will show the main idea of the
new architecture as a series of principles.

Figure 1. Computer system with hardware support of
operations on large data sets

3. System description

From a formal point of view, the data structure com-
bines two types of information: particular information
about stored data (i) and information about the structure
organization itself (ii). For example, the binary search
tree [7] consists of the data set (as the information part)
organized due to the structure relationships (binary tree
as the structure part). When we have to find the min-
imum data element from the tree, we do not need to
know the particular data value but should operate only
on its relations. The duality of data structures is clear
but has been never used by the hardware to share com-
puting into two threads: first, to compute over the struc-
ture part, and second, to compute over the information
part. In this work, we develop the special hardware pro-
cessor to directly support the operations over structure
relations in parallel with operations over scalar data.

In Figure 1, we show the basic concept of a new ar-
chitecture. It is clear that the microprocessor in a generic
system should execute both the main algorithm and the
algorithm to operate data relations. Even if the multi-
threaded microprocessor is used, the programmer has to
make great efforts to create a parallel code in order to
access the shared memory for multiple threads. To ex-
tend the ability of parallel code execution, we dedicate
the relations computing thread to the SPU. This device
should operate over structured data in the local mem-
ory and therefore is able to independently execute the
special instruction set. As a result of those instructions,
scalar data moves from SPU to CPU for further comput-
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ing.
Principle 1. The SPU is a special unit that processes

the relational part of data structures while the CPU per-
forms computations on the informational part of data
structures.

Let us consider an example to understand this prin-
ciple and its advantages.

3.1 How this system works

The search for the minimum (or maximum) value
from a big data set is the usual problem in optimiza-
tion algorithms. For network routing, it is often neces-
sary to define a path with minimum latency in order to
allow data transmission as quickly as possible. Those
operations are required for motion planning in robotic
systems when it is necessary to choose a set of single
movements in order to take a position with minimum
energy consumption. Thus, it is important to determine
a computing system architecture that is most effective
for such an operation. If the introduced system is used
for that purpose, this makes it possible to store data sets
in the SPU’s local memory and to request values in the
desired sequence under the separate control flow (Fig-
ure 2). At the moment, when CPU will really request the
minimum value, the data will be already provided by the
SPU. Therefore, the acceleration effect can be achieved
due to parallel operations over data sets in the SPU si-
multaneously with the generic workload execution in the
CPU.

Even if it is impossible to understand in advance
what kind of data will be requested by the main algo-
rithm, the CPU just has to transmit the request to the
SPU, and then, it will be able to make other computa-
tions at that time. Both processors use their dedicated
local memory and should not conflict during memory
access. Thus, the entire system works faster due to deep
parallelism and efficiency.

3.2 CPU and SPU interactions

To execute both scalar and structure operations in
parallel, the independent execution pipelines should be
organized for the SPU and CPU. We propose to use the
system architecture as shown in Figure 2. As usual, the
CPU starts all initial procedures and reads data from
the I/O subsystem (flash memory, disk storage, network,
SSD, etc.). Following this, the CPU initializes its data
segments in the local memory and inserts the data struc-
ture into the SPU through multiple ”insert” commands.
Data structures are organized in the form of key-value
pairs inside the SPU’s memory.

Principle 2. The SPU has independent access to the
local memory in order to store data structures and exe-

Figure 2. Multiple instruction and single data stream
computer architecture

cute instructions. The results of the SPU’s instructions
are forwarded to the CPU for further use in the compu-
tational algorithm.

There are two possible ways to start the SPU’s in-
struction: when CPU sends it through the C2S command
queue (i) and when the SPU starts it from the local com-
mand memory (ii). If the first one is used, then this sys-
tem is similar to the heterogeneous system with an ac-
celerator. If the second way is used, this system can be
classified as a parallel computer with multiple instruc-
tions and single data stream architecture.

3.3 About the Flynn’s taxonomy

From the M. J. Flynn taxonomy, the four classes
of computer systems are known, which are the follow-
ing: SISD (single instruction stream and single data
stream), SIMD (single instruction stream and multi-
ple data stream), MISD (multiple instruction stream
and single data stream), and MIMD (multiple instruc-
tion stream and multiple instruction stream). All those
classes, excluding MISD, are used in generic computer
systems, while experts do not place any working system
in the MISD category [9]. To be sure, this type of com-
puter architecture was previously implemented in 1970
for systolic arrays [5] and in space shuttle flight control
computers. But systolic arrays were highly specialized
for applications and therefore not widely implemented.
The information about space shuttle computers is very
limited and still unclear. In any case, those systems were
not developed to perform discrete optimization by the
hardware.

Argument 1. The data structure is the representation
of data and its relations inside the single data stream.
This is true because even the sequence or the absence of
any data element can be used by the algorithm as use-
ful information. If the algorithm operates over the data
structure, there are two sequential stages of computing:

1005



operations on the structure part to solve data relations
(i); as the result of the first stage, it becomes possible to
operate on scalar data (ii).

Argument 2. The SPU and CPU operates in parallel
and independently. The ability to execute both threads
in parallel is supported by the CPU and SPU and their
local memories. When the system allows the execution
of code independently to solve one problem, this means
the computation of the multiple instruction streams. The
execution, admittedly, may not be free of data dependen-
cies. But in comparison with microcode dependencies
in the processor pipeline, the SPU and CPU operate un-
der independent control sequences and are not defined
just as one operation stage. The example of such oper-
ations is the graph traversal algorithm when we need to
compute every graph’s vertex one by one. The SPU can
do this with different traversal algorithms: Breadth-First
Search (BFS) or Depth-First Search (DFS) [7]. Thus,
the CPU uses results of graph traversal to solve the
main problem with shared and independent instruction
stream.

Principle 3. The computing system with hardware
support of data structures executes multiple instruction
streams for a single data stream.

The SPU execution thread uses two types of synchro-
nization with the CPU thread. The first one is a special
semaphored operand in the SPU instruction to fix the sit-
uation when the SPU should wait for that operand from
the CPU. For that purpose, the instruction consists of the
operation field, operands, and their tags. If the operands
should be received from the CPU data bus, their tag has
to be set to the semaphored state. Similar to generic
microprocessors, the SPU has the conditional jump in-
struction to move the execution flow to a target instruc-
tion. This command also has two semaphored operands:
target instruction address (i) and direction bit (ii). In ad-
dition, the SPU is able to execute commands from the
CPU’s bus or from the local command memory. This
ensures the system’s ability to operate in several modes.

Principle 4. The SPU can operate in MISD mode, in
accelerator mode, and in combined mode.

4. SPU microarchitecture and instruction
set

The SPU uses the B+tree model to perform all oper-
ations and to access data in the local memory. The first
reason for this is known from the Database Management
System (DBMS): this type of trees is extremely effective
for block-oriented memory access. Due to the fact that
we have to use a burst-oriented Random Access Mem-
ory (RAM), it allows the loading and storage of big data
blocks faster. The second reason is that B+trees may

have high fan-out in a node that reduces the number of
memory access operations to find the element. In addi-
tion, the fan-out can be easily changed to implement the
variety of data structures from tiny to huge.

Therefore, the SPU stores information as key-value
pairs in the form of non-overlapping B+trees. Thus, ev-
ery instruction includes from one up to three operands:
one to three tree numbers, key, and value. The SPU has
a pipelined microarchitecture to provide B+tree process-
ing in parallel: it allocates memory for nodes and leaves,
performs search in subtrees, provides insertion and dele-
tion operations through the tree structure [16]. Most of
the SPU commands require O(log n) memory access op-
erations, but they can be executed much faster in com-
parison with generic CPU programs due to the effec-
tive SPU’s hardware and the special caching technology.
Such a technology allows us to speed up the computing
process over keys and to store the search path inside the
special internal cache (named Catalogue or CAT).

Principle 5. The sequence of B+tree nodes on the
route from the tree root to its leaf is called ”trace”. The
trace is stored in the SPU’s cache memory for immediate
access.

Let us consider the SPU’s microarchitecture, which
is shown in Figure 3. B+tree processing can be for-
mally divided into its tracing stage and leaf operation
stage. Thus, there are two units to perform them. CAT
performs the processing of the tree forest from the root
down to the last internal level. The second stage is per-
formed by the Operational Buffer (OB), which is used
to operate keys and values on the leaf level. The SPU’s
memory subsystem includes multilevel storage devices:
• First-level memory comprises of registers to store

nodes and leaves for immediate access inside the
CAT and OB. It is organized as an associative
memory to perform useful operations such as
searching, shifting, union, slicing, etc.

• The second-level is the Internal Data Structure
Memory (IDSM), which is boundary addressable.
All bounds are processed in CAT to define the
physical addresses for IDSM access.

• The third-memory level is the external Data Struc-
tures Memory (DSM) that stores all data structures
outside the SPU. This memory is a typical RAM
and should have a large capacity to store all data
structures.

CAT consists of multiple single Catalogue Proces-
sor Elements (CPE) to perform root and internal node
processing (excluding bottom leaves). Every B+tree has
many boundaries to define the sub-tree, where the search
key can be stored. To make processing more parallel,
the Control Unit (CU) sends the same microcode to all
CPEs in order to perform the same operations for dif-
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Figure 3. Structure processor microarchitecture

ferent nodes. This type of processing is known as an
SIMD, while each CPE is defined as an SISD unit.

Any SPU command begins with a request to the CAT
to define the right track. If the stored track is not valid
for the new request, CPEs raise missed signals to the
CU. After that, the CAT unit begins to route upwards to
the tree root to find the right trace, level by level. When
the correct sub-tree is found (up to root level in the worst
case), CAT starts to load the new trace from DSM by
going downwards to the leaves. In parallel with that, the
trace loads into the IDSM and OB. Such a procedure sig-
nificantly accelerates B+tree tracing by combining the
caching due to fast memory access and the parallel pro-
cessing inside CPEs. Experiments show the great accel-
eration of such hardware processing in comparison with
software programming.

Principle 6. The bottom node of the B+tree consists
of a number of key-value pairs (called ”line”) and stores
in the Internal Data Structure Memory (IDSM).

After the full track becomes known, the OB loads the
line from the IDSM. It processes the search, insert, and
delete operations for the leaves. The most difficult to
realize are operations over two or three data structures,
such as union, intersect, complement, and slicing. To
support these operations, the OB consists of three parts:
Buffer A and Buffer B to store data for source structures
A and B and Buffer R to store and process the result
data structure (named R). The last one is much more

functional in comparison with A and B Buffers and al-
lows multiple types of shifting and searching operations
to find the right place for the new key or to delete the
key and its value. As it is fixed for CAT, all of OB’s
buffers also include Operational Buffer Processor Ele-
ments (OBPE) to process keys and values in parallel.
Due to the fact that all OBPEs execute one instruction
over multiple data streams, the OB can be classified as
an SIMD unit.

After the leaf is processed in the OB, the R Buffer
uploads the result line back on IDSM. If any further pro-
cessing is needed (for example, if Buffer R overflows or
if the next block should be loaded), CAT defines the new
trace and then raises the new line loading into the OB.
When the whole operation is done, the OB puts result
(if supported for that command) to the Data Buffer (DB)
and forwards it to the CPU.

The next unique SPU block is Fetch Instruction Unit
(FIU). The function of FIU is to fetch commands from
the MISD Command Memory (CM) and from the CPU
as well. The FIU defines priorities for both instruc-
tion streams and check operand readiness. As is shown
above, each operand inside the SPU instruction can be
tagged by the CPU. If the tag is not valid, it raises the
FIU to go to the waiting state.

Principle 7. The tag is a field in the SPU instruction
to indicate the operand validity. Such an instruction can
be executed only when all its tags are in the valid state.
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If the instruction is received from the CPU (accel-
erator mode), then such a command obviously has all
operands in the valid state. As for instructions from
DSM, all ”non-valid” operands can be received from
the CPU in any order, but the tag number should be at-
tached. Such a case suggests a new addressing mode for
operands, which is called ”external addressing”.

Principle 8. External addressing is a mode of
operand addressing used to indicate that the operand
should be received later from the CPU.

Theoretical research has shown strong dependencies
between sequences of CPU and SPU operations for all
the discovered algorithms. One way to have less depen-
dencies is by reusing the previous results or operands.
In most cases, those results can be reused as a part of the
new compound key (i.e., similar to compound or com-
posite keys in databases). Therefore, we designed the
hardware unit to automatically generate new keys from
special result registers. Such a technique, as research
has shown, significantly reduces dependencies from 80-
90% down to 30-50% of the SPU’s instructions. We are
also introducing the compound register addressing mode
to use this hardware function.

Principle 9. The compound register addressing is
the addressing mode used when the new operand should
be constructed from the parts of previously defined re-
sults.

The SPU command set is constantly growing due to
algorithm requirements. Now, it consists of the 20 high-
level machine instructions listed below.

Search (SRCH): The SPU expects the structure
number and the key as operands and performs the ex-
act search of this key.

Insert (INS): The SPU expects the structure number
and key-value pair and then inserts them into the struc-
ture. If the key is already stored, the SPU renews its
volume.

Delete (DEL): The SPU performs the exact search
for the specified key and removes it from the data struc-
ture.

Smaller and Greater Neighbors (NSM, NGR):
These instructions search the key that is a neighbor of
and smaller (or greater) to the given operand and then re-
turn its key and value. The neighbor operation is useful
for fuzzy or heuristic computing for many algorithms,
such as clustering, aggregation, and interpolation.

Maximum and Minimum (MAX,MIN)): These in-
structions find the first or last key in the data structure.

Cardinality (CNT): The SPU receives the structure
number to find the cardinality.

AND, OR, NOT: These instructions perform union,
intersection, and complement operations on two data
structures and then put the result into the third one.

Figure 4. The hierarchical nesting of computer systems
architecture on the example of the SPU

Slices (LS, GR, LSEQ, GREQ): These are the in-
structions to extract the subset of one data structure into
another.

Search next and previous (NEXT, PREV): These
instructions find the neighbor (next or previous) keys in
the data structure from the stored key. In contrast with
NSM or NGR instructions, the key should be mandato-
rily stored in the data structure.

Delete all structure (DELS): This instruction clears
all resources used by the given structure.

Squeeze (SQ): This instruction compresses the
memory blocks used by the data structure. It can be
timely used to low DSM memory fragmentation.

Jump (JT): This instruction branches the SPU code
in order to give the CPU control and is available only in
the MISD mode. This command includes one address
operand and two tags. The first tag indicates the address
validity, and the second tag indicates the jump direction.
For example:
• The JT(?, ?) command is waiting for both direction

tag and jump address with its tag
• The JT(?, @1) command is waiting for the direc-

tion tag and jumps to the next command if tag=0 or
to @1 address when tag=1

• The JT(1, @2) is the unconditional jump to the @2
address

5. Hierarchical nesting of computer sys-
tems architecture

Let us arrive at one important conclusion in this sec-
tion. As we fixed above, the SPU includes CAT and
the OB, which can be classified as SIMD units due
to the fact that each of them consists of a number of
single SISD processor elements (Catalogue Processor
Elements and Operational Buffer Processor Elements).
Therefore, we have found at least one example of com-
puter architecture, where the MISD computer includes
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some SIMD units and every SIMD unit includes a num-
ber of SISD units. Also, we can construct the parallel
MIMD system with some MISD units. This fact allows
us to make a statement about the hierarchical nesting of
computer systems architecture (as shown in Figure 4).

Principle 10. The principle of the hierarchical nest-
ing of computer systems architecture suggests that one
MIMD system includes multiple MISD systems, one
MISD system includes multiple SIMD systems, and one
SIMD system includes multiple SISD systems.

6. Programming features in MISD system

The new computing principles cannot be imple-
mented without changes in the programming technol-
ogy and algorithms. Like other heterogeneous systems,
the MISD computer requires the modification of generic
sequential algorithms to the asymmetric multi-threaded
version. This could be the significant disadvantage in
case of high programming complexity and weak tech-
nology readiness. Therefore, it is necessary to develop
the simple and convenient technology to take into ac-
count the new architecture features. For the proposed
architecture, this problem could be solved since most of
the optimization algorithms are formed with operations
from the SPU’s instructions set. Thus, there is no need
to choose specific data structures to develop MISD algo-
rithms for a particular problem, because data structures’
physical layer is already implemented by the hardware.

The main stages of the methodology to represent the
generic algorithm in the MISD version are noticed be-
low.

Stage 1. Data modelling: The algorithm’s perfor-
mance depends on the data models and the complexity
of the implemented methods. Thus, it is quite impor-
tant to effectively represent both of them into the data
structure paradigm in order to design the productive pro-
gram. This process can usually be implemented similar
to the implementation of DBMS and consists of three
levels: conceptual, logical, and physical. On the concep-
tual and logical levels, all the significant information for
the problem area should be recognized and described in
the form of known data formats (data structures, objects,
scalar values, etc.). As an example, we will show the
graph representation technique on the logical level when
the conceptual one is already clarified and the physical
level is covered by the SPU hardware. We will show
three possible ways to represent the graph.

CASE 1. THE GRAPH G(V,E) REPRESENTATION
BY THE ADJACENCY LIST.

Let the algorithm require traversing the graph G,
for example, through the DFS algorithm [7]. There-

Figure 5. Graph G(V,E) representation examples

fore, the main graph operation is to search those vertices
v ∈ Ad j[u], which are specified as incident to u, and the
subsequent transition to the processing of all associated
vertices. Since the vertex degrees are different, it is re-
quired to store the number of edges in the data structure.

We will use the ”dot” notation to
show ST RUCTURE.KEY as a key field,
ST RUCTURE.VALUE as a value, and (..,..,..) as
concatenation function. Let the G structure store
vertices by their numbers. Then, the G.KEY field stores
information about one edge of u vertex (u, i), where i is
the internal index for the uv edge. Therefore, G.VALUE
stores the vertex v number and its weight c. One way
to understand a particular vertex degree is to store
additional record with a zeroed index. When the edge
index is equal to zero (u, 0), this record stores the vertex
degree count = |Ad j(u)| (as shown in Figure 5.a).

CASE 2. THE GRAPH G(V,E) REPRESENTATION
BY A LIST OF INCIDENT EDGES.

If the algorithm has to find the edge between u and v
vertexes, the data structure can be represented in a differ-
ent way. The G.KEY field can be compounded by u and
v numbers, while G.VALUE should store the weight c of
the uv edge. To get the list Ad j[u] of incident edges, the
data structure should store special markers with zeroed
indices (u, 0) or the neighbor commands can be used
(NGR, NSM opcodes). This allows us to find a starting
position of the u record and then to traverse all others
edges with the NEXT instruction (as shown in Figure
5.b).

CASE 3. THE GRAPH G(V,E) REPRESENTATION
BY AN ORDERED LIST OF INCIDENT EDGES.

It is often necessary to store a graph with a list of
edges in order of their weights. Since the vertices weight
in general cases is not the unique value, the compound
key G.KEY = (c, u, v) can be used. The G.VALUE field
can store any useful information (as shown in Figure
5.c).

Stage 2. Modifying the algorithm: In the next stage,
all algorithm blocks should be defined in terms of data
structure operations. This also includes appropriate
operand specification for SPU instructions and getting
the results for the further algorithm steps. In such
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commands as Search, Delete, Max/Min, Next/Prev and
Neighbors, the S2C data queue (Figure 2) will store re-
sult keys and values, which can be used by the CPU al-
gorithm. All MISD instructions also change the SPU
status register to define whether the execution was suc-
cessful. As a result of this stage, the modified algorithm
can be implemented in the acceleration mode.

Stage 3. Splitting algorithm into threads: To use the
MISD mode, the general algorithm should be split into
two interrelated threads in order to perform them on the
CPU and SPU processors. To ensure that the equiva-
lence of the MISD algorithm results with the generic
one, the synchronization primitives should be included
in the CPU thread. This could be realized with PUT
and GET commands. The addressing mode for every
operand should be defined as well. Here, we demon-
strate an example of the search command execution.

Data← SRCH(G, key)
CPU thread SPU thread
PUT(key) =⇒
Data = GET() ⇐= SRCH(G,?)

As fixed above, such a code can work only in the
MISD mode when operand tags could be set into the un-
defined value ”?”. When the SEARCH(G, ?) operation
is loaded into the SPU, the FIU block checks tags and
begins to wait for the second operand from the CPU.
The PUT operation on the CPU side sends this operand
to the SPU data queue. Following this, the FIU sends
the operation and all operands to the execution stage.

7. Algorithm example

We will show a simple example of how the BFS algo-
rithm can be implemented on the MISD system. BFS is
a graph-traversing algorithm used to define the sequence
of graph vertices in order when current neighbor ver-
tices are exploring rather than the next-level neighbors
[7]. We will use the graph G(V,E) representation by
the adjacency list (Case 1). Vertex marker (u, 0) will
indicate the flag information, as u vertex has been al-
ready explored before: G.KEY = (u, i), i = 0..|Ad j[u]|,
G.VALUE = (v, c) when i 6= 0, G.VALUE = (|Ad j[u]|,
f lag) when i = 0.

The queue Q is also required to store the vertex
sequence in the explored order, so Q.KEY = ( j) and
Q.VALUE = (u), where j is the auto incremented value.
Let the s vertex be the starting point. The following al-
gorithm is ready to be implemented in the MISD accel-
eration mode.

Algorithm 1 BFS(G,s) /Acceleration mode/
1: j=0 .Queueing index
2: INS(Q,0,s) .Add initial vertex s to Q
3: repeat
4: cur = MIN(Q) .Obtain the first from Q
5: DEL(Q,cur.KEY) .Delete it from Q
6: t = SRCH(G, (cur.DATA, 0)) .BFS use a FIFO
7: count = t.VALUE.|Ad j[u]| .Define the vertex degree
8: for i=1 to count do .For all edges
9: v = SRCH(G,(t.KEY.u,i)) .Read next edge

10: if v.DATA. f lag == 0 then .If v not explored
11: j= j+1 .Increment index for Q
12: INS(Q, j,v.KEY.u) .Add v to Q
13: INS(G,(v.KEY.u,0),(0,1)) .Write f lag=1 to v
14: end if
15: end for
16: until CNT(Q) = 0 .While Q is not empty

Now, the algorithm can be split into the CPU and
SPU threads. We are using an asterisk (*) to note those
SPU commands, which are fully independent from the
CPU thread. Commands with two asterisks (**) have
dependencies only from SPU results and could be con-
catenated from keys and values in the compound register
addressing mode.

Algorithm 2 BFS(G,s) /MISD mode/
1: /*CPU thread*/ /*SPU thread*/
2: j=0
3: PUT(s) INS(Q,0,?)
4: repeat
5: PUT(1) JT(?,@1)
6: cur=GET() @1:MIN(Q)*
7: PUT(cur.KEY) DEL(Q,?)**
8: PUT((cur.DATA, 0))
9: t=GET() SRCH(G,?)**

10: A = t.KEY.|Ad j[u]|
11: for i=1 to A do
12: PUT(0) @2:JT(?,@4)
13: PUT(t.KEY,i)
14: v=GET() SRCH(G,?)**
15: if v.DATA. f lag == 0 then
16: PUT(0) JT(?,@3)
17: j= j+1
18: PUT( j)
19: PUT(v.KEY) INS(Q,?,?)
20: PUT(v.KEY,0)
21: PUT(0,1) INS(G,?,?)**
22: else
23: PUT(1)
24: end if
25: end for @3:JT(1,@2)*
26: PUT(1)
27: until GET() = 0 @4:CNT(Q)*
28: PUT(0) JT(?,@1)

Here, we can see that 54% (7 from 13) of all SPU
commands can be executed independently in parallel
with the CPU thread. We also received the same re-
sults for some important applications on graphs and net-
works, such as Dijkstra algorithm to find the shortest
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path, Ford-Fulkerson algorithm, graph traversal algo-
rithms, Kruskal, and Prim algorithms, and some others.

8. Experiments results

The SPU was implemented on the Virtex FPGA
platform with on-chip PowerPC405 CPU. Experiments
were carried out to measure the productivity of the im-
plemented MISD principles. We used the first SPU ver-
sion with the following parameters:
• 32 bits for keys and values
• The maximum number of keys in the structure 2∗

106

• The maximum number of data structures controlled
by SPU - 7
• DSM capacity: 256 MB, DDR SDRAM, 64 bits

memory bus
• SPU and CPU frequencies: 100 MHz
To compare the effectiveness of MISD algorithms

with similar algorithms on other hardware platforms,
the soft B+tree implementation has been developed for
an embedded Microblaze microprocessor, Intel x86 mi-
croarchitecture (Pentium and Core i5 microprocessors),
and ARM11 microarchitecture. Due to the significant
frequency difference between FPGA and VLSI tech-
nologies, we measured clock counts instead of the ex-
ecution time. This allows us to understand the improve-
ments of the new principles without the technological
impact. It is also significant to understand the improve-
ment of the multi-core technology in order to compare
it with the MISD architecture. Memory management
features of the SPU should be also taken into account.
Thus, we used both multi-core and single-core systems
to compare them with MISD.

We measured the performance of some basic instruc-
tions and compared it with the same instruction realized
by the software of other architectures. These tests con-
sist of the loop of single-command execution in order to
understand dependencies between cycle count and the
data structure elements number. The tests show good
performance, which was 3x up to 164x (shown in Fig-
ure 6). Then, we implemented the series of algorithms to
understand all system performance for some algorithms.
Experiments show 1.5x efficiency improvement of the
MISD system on Kruskal’s algorithm and 2.4x improve-
ment on the Prim’s algorithm. As shown in Figure 6,
the MISD system reached a significant performance im-
provement in all experiments.

Along with this, we should note the high efficiency
of multi-core processors due to their high parallelism:
the performance of 4x cores was only 1.5 times lower
than that of the MISD. However, we can also note that
only the first version of the SPU was used, which does

not contain the conventional cache memory, and many
internal processes are far from optimal yet. So the next
optimized SPU version is developing now to reach a sig-
nificantly greater efficiency.

Table 1. Algorithm and operation acceleration for the
MISD architecture (measured in clock cycles)

Experiment Acceleration
Delete (MISD with Microblaze) 164.4
Insert (MISD with Microblaze) 42.7
Search (MISD with Microblaze) 31.4
Delete (MISD with Intel Pentium 4) 22.8
Dijkstra’s Algorithm (MISD with Intel Pentium 4) 19.4
Search (MISD with Intel Pentium 4) 15.3
Depth-First Search (MISD with ARM11) 12.9
Breadth-First Search (MISD with ARM11) 12.3
Delete (MISD with Intel Core i5) 11.8
Prim’s Algorithm (MISD with ARM11) 10.3
Search (MISD with Intel Core i5) 9.8
Dijkstra’s Algorithm (MISD with Intel Core i5) 7.6
Kruskal’s Algorithm (MISD with ARM11) 7.8
Insert (MISD with Pentium 4) 5.7
Insert (MISD with Intel Core i5) 3.2
Depth-First Search (MISD with Intel Core i5) 3.2
Breadth-First Search (MISD with Intel Core i5) 3.0
Prim Algorithm (MISD with Intel Core i5) 2.4
Kruskal’s Algorithm (MISD with Intel Core i5) 1.5

We also measured the power consumption for MISD
system that was about 1.1W. This is 31 times lower
than Core i5 power consumption (that is equal to 35W).
Structure processor hardware complexity is equal to
1.1M gates, while the PowerPC405 microprocessor re-
quires about 2.5M gates. All the MISD system occupy
about 420 times less gates than 4x cores of Core i5.

9. Conclusion

A key outcome of the proposed principles is the new
parallelism technology to divide algorithms into parts
even if they are sequential or have data dependences.
This allowed us to begin the designing of the SPU, pro-
gramming technology, and algorithms, which are speci-
fied for discrete optimization over big data sets.

The MISD system and SPU was implemented on
FPGA and successfully verified. A series of experi-
ments show the high efficiency of the proposed prin-
ciples and hardware architecture. The performed tests
demonstrated the acceleration from 1.5x up to 164x
times with a significantly low hardware complexity (420
times smaller than Core i5) and power consumption (31
times lower than for Core i5). This allows us to ex-
pect the justified implementation of MISD principles for
many important solutions:
• in scientific researches for general optimization
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Figure 6. Comparison of the clock counts to execute basic commands and algorithms in the SPU and generic CPUs

problems on graphs, data sets, and data structures
• to plan the robotic systems movement
• for network routing and QoS resource allocation
• to support the Access Control Methods in DBMS
• to accelerate queries in DBMS
• for storage acceleration in enterprise systems
• to accelerate operating systems
• to support CAD systems
The result mentioned above also allows the imple-

mentation of the MISD architecture for big data pro-
cessing. For that purpose, we plan to implement the
SPU inside the enterprise OpenPOWER platform with
POWER8 CPU. This will allow us to use wide keys (256
bit or more), 16GB and more for the data structure mem-
ory, and the IBM CAPI acceleration technology [3]. The
other preferable way is to use SPU inside IoT devices to
improve their analytical functions.
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