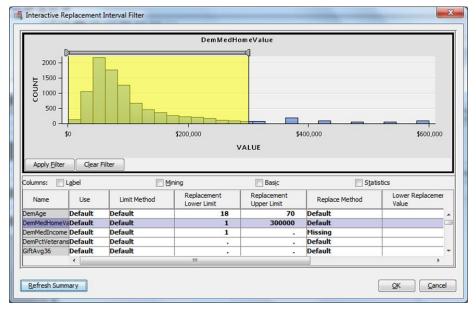

SAS ENTERPRISE MINER ПРЕДОБРАБОТКА ДАННЫХ

ПОДКЛЮЧЕНИЕ ИСТОЧНИКА ДАННЫХ



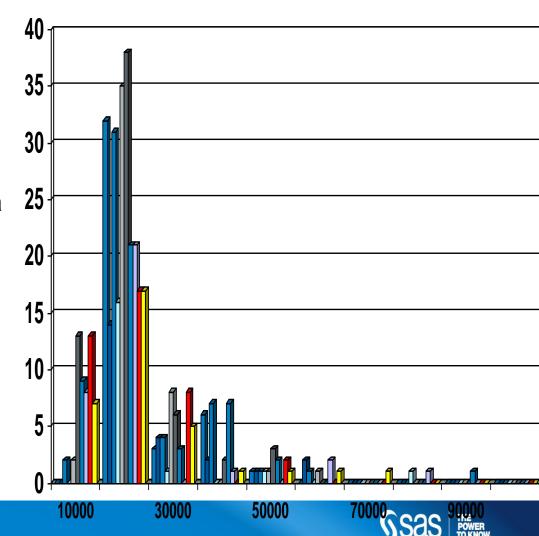
- Выбрать источник.
- Определить роли переменных.
- Определенть типы переменных.
- Определить роль источника.

ФИЛЬТРАЦИЯ И ЗАМЕНА ДАННЫХ

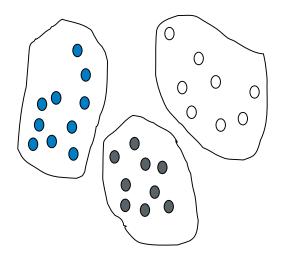
• Цель – поиск и удаление из выборки артефактов и выбросов

Правила фильтрации задаются для отдельных переменных:

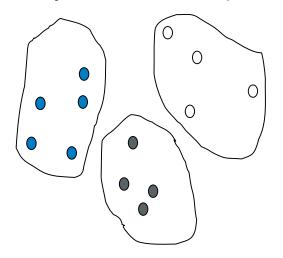
- Ручные задаются недопустимые значения переменных (диапазоны для числовых, список для категориальных)
- Редкие значения для категориальных
- Нетипичные значения для числовых (задается допустимое отклонение от мат. ожидания или допустимое отклонение от медианы или экстремальные процентили и другое).


СОКРАЩЕНИЕ ОБУЧАЮЩЕЙ ВЫБОРКИ – СЛУЧАЙНАЯ ВЫБОРКА (SAMPLING)

- Цель выбрать «представительное» подмножество примеров:
 - В идеале с тем же распределением
 - Просто случайная выборка работает плохо не удается сохранить характеристики всего набора
- Адаптивные методы случайной выборки:
 - В соответствии с «грубой» моделью, например, кластерной
 - Случайная выборка в рамках «срезов», построенных по классу, высоко селективному атрибуту или их комбинации
 - Основная особенность выборка в рамках среза или кластера пропорциональна размеру среза или кластера


СОКРАЩЕНИЕ ОБУЧАЮЩЕЙ ВЫБОРКИ (SAMPLING) – МЕТОД ГИСТОГРАММ

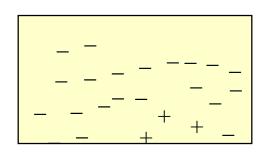
- Задается процент исходной выборки
- Для выбранной категориальной переменной (переменная стратификации) строится частотная диаграмма (для числовой необходима предварительная дискретизация)
- Наблюдения случайным образом выбрасываются так, чтобы сохранить распределение переменной стратификации



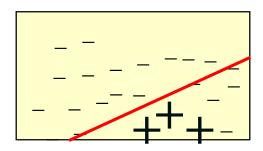
СОКРАЩЕНИЕ ОБУЧАЮЩЕЙ ВЫБОРКИ (SAMPLING) – КЛАСТЕРИЗАЦИЯ

«Сырые» данные

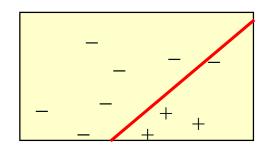
Кластерная/стратифицированная случайная выборка

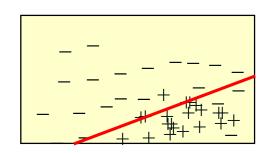

- Кластеризуем данные
- Каждому наблюдению присваивем номер его кластера
- Далее переменная с номером кластера рассматривается как переменная стратификации

«БАЛАНСИРОВКА» КЛАССОВ


- Обычная ситуация число примеров одного класса может на порядки отличаться от числа примеров другого
- Если решать напрямую ничего не получится
- Три варианта:
 - Разный «штраф» за ошибку наиболее популярный метод
 - Under sampling «искусственно» увеличивать число примеров «маленького» класса – можно испортить распределение и закономерности
 - Oversampling «искусственно» уменьшить число примеров «большого» класса - можно потерять важную информацию, но тоже популярный метод

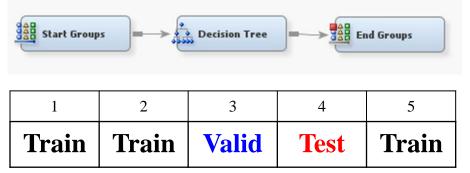
ПРИМЕР «БАЛАНСИРОВКИ» КЛАССОВ


 Пусть "-" в 1000 раз больше чем «+», тогда точность «константного классификатора (всегда «–»)
 99.9%

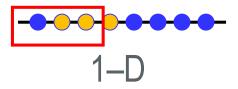


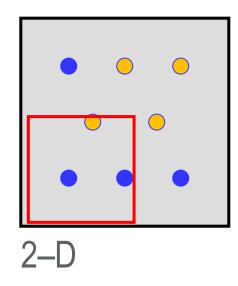
• Если «штраф» на «+» за ошибку увеличить в 1000

Over sampling и under sampling:

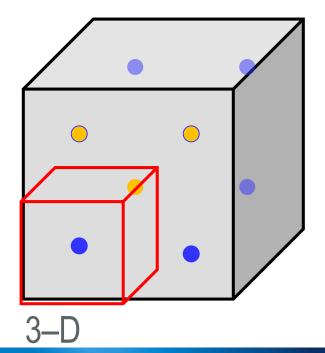

ФОРМИРОВАНИЕ ОБУЧАЮЩИХБ ВАЛИДАЦИОННЫХ И ТЕСТОВЫХ ВЫБОРОК

- Переобучение:
 - нельзя строить и проверять модель на одних и тех же данных
- Обычный подход в DM случайное разбиение на 3 набора
 - Тренировочный для построения семейства моделей кандидатов на финальную модель
 - Валидационный для выбора из кандидатов финальной модели
 - Тестовый для оценки качества финальной модели на «новых» данных
 - Иногда валидационный=тестовый
- Замечания:
 - Необходимо сохранить «пропорцию» значений отклика это просто для задач классификации, сложнее для регрессии, еще сложнее для ранжирования и других
 - Необходимо учитывать специфические атрибуты, например, время, место и другие ...

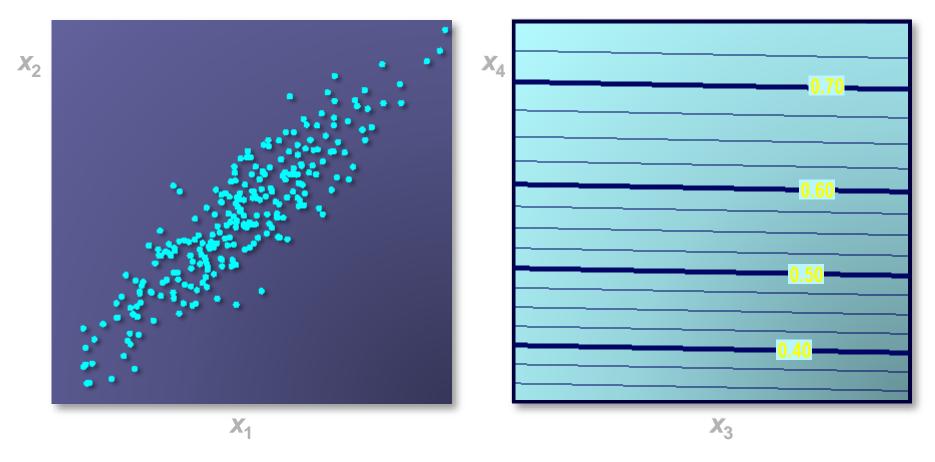



ДРУГИЕ ПОДХОДЫ К ФОРМИРОВАНИЮ ВЫБОРОК

- Cross валидация перекрестная проверка:
 - Если недостаточно данных, разбиваем на равные блоки с сохранением
 - «пропорции» отклика
 - Строим модели для всех комбинаций
 - Результат усредняем
- Bootstrapping:
 - Из набора размера N формируем с помощью случайной выборки с возвратом М наборов, каждый размера N
 - В каждый из М какие-то элементы не попадают, какие-то входят по несколько раз
 - Строим модели для всех наборов, считаем оценки для всех моделей, но <u>на</u> исходном наборе
 - Результат оценки усредняем



«ПРОКЛЯТИЕ» РАЗМЕРНОСТИ


- $E_p(r)=r^{1/p}$
- $E_{10}(0.01)=0.63$
- $E_{10}(0.1)=0.8$

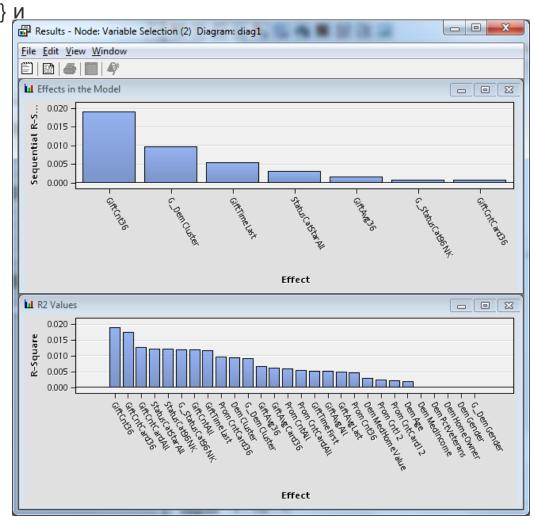
ПРОБЛЕМЫ ВХОДНЫХ ПЕРЕМЕННЫХ

Зависимость

Не релевантность

Выхода два: либо преобразование либо исключение

СОРАЩЕНИЕ РАЗМЕРНОСТИ


Дано: входные переменные {x1,...,xn} и выходная (числовая или бинарная) у Задача: оставить только значимые и независимые хі

Работает в два этапа:

- 1. Уделяет все x_i , где $R^2(x_i) < T1$ удаление незначимых
- Forward stepwise регрессия
 f(x_{i1},...x_{ik}) пока
 R² (f(x_{i1},...xi_{ik}))-R² (f(x_{i1},...x_{ik-1}))>T2
 удаление зависимых

Преобразования переменных:

- Дискретизация непрерывных
- Группировка категориальных

ПРОПУЩЕННЫЕ ЗНАЧЕНИЯ

- Не все значения атрибутов известны или достоверны
 - Наиболее важная задача, так как многие к ней сводятся (удаление шума, не консистентностей и т.д.)
- Причины появления пропущенных значений
 - Ошибки «оборудования» и/или ПО при получении данных от датчиков и из экспериментов
 - Удаление несогласованных значений атрибутов
 - Просто не введены в систему из-за халатности или ошибки
 - Часть данных может быть опциональна с точки зрения бизнес процессов организации, но важна для анализа
 - Не хранится правильная история изменений невозможно правильно определить значение на момент анализа
- Пропущенные данные:
 - Ведут к неточным результатам анализа
 - Допускаются не всеми алгоритмами анализа

МЕТОДЫ ОБРАБОТКИ ПРОПУЩЕННЫХ ЗНАЧЕНИЙ

- Игнорировать объект или запись:
 - Можем потерять важные объекты (например, опорные вектора)
 - Можем «испортить» выборочное распределение
 - В некоторых задачах процент пропущенных значений велик (>50%)
- Заполнение пропущенных значений «вручную»:
 - Нужен очень грамотный эксперт
 - Полностью «вручную» невозможно для больших объемов
 - Правила заполнения (импутации) трудно формулировать проблема полноты, противоречивости, достоверности
- Использование глобальной спец. константы типа "unknown"
 - Не всеми алгоритмами анализа реализуемо
- Импутация «среднего» или «наиболее ожидаемого» значения
 - По всей выборке, по страту (срезу), по классу, по кластеру и т.д.
 - Наиболее популярный метод
 - но можем «испортить» выборочное распределение
- Методы импутации на основе DM
 - Будем рассматривать

ВОЗМОЖНОСТИ ИНСТРУМЕНТАРИЯ ІМРИТЕ

- Импутация константным значением все пропуски для переменной заменяются на:
 - Моду (для категориальных) или мат. ожидание, или пользовательскую константу или робастные оценки

- Импутация псевдослучайным значением:
 - В соответсвии с распределением
- Импутация прогнозом (оценкой)
 - Только деревья решений (но можно делать свои модели)

Для неслучайных пропусков – индикаторные переменные

- Одна на все наблюдение
- Своя для каждой переменной

ПРЕОБРАЗОВАНИЕ НЕПРЕРЫВНЫХ ПЕРЕМЕННЫХ

- Простые преобразования:
 - Функции от исходной (log, exp, ...)

• Нормализация (z-score, центрирование, сведение на [0,1])

$$v' = \frac{v - mean_A}{stand _ dev_A} \qquad v' = \frac{v - min_A}{max_A - min_A}$$

- Дискретизация (ранве интервалы, равные группы и т.д.)
- Адаптивные преобразования перебор простых и выбор лучшего по некоторому криетрию:
 - Нормальность распределения результата
 - Корреляция с откликом
 - Оптимальная дискретизация

ОБЪЕДИНЕНИЕ РЕДКИХ ЗНАЧЕНИЙ КАТЕГОРИАЛЬНОЙ ПЕРЕМЕННОЙ

Level	N _i	ΣΥ _i	p _i	
Α	1562	430	0.28	
В	970	432	0.45	
С	223	45	0.20	
D	111	36	0.32	
E	85	23	0.27	
F	50	20	0.40	
G	23	8	0.35	ì
H	17	5	0.29	i
	12	6	0.50	i
J	5	5	1.00	ĺ

БИНАРНОЕ КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПЕРЕМЕННЫХ

Level	D _A	D _B	D _C	D_D	D _E	D _F	D _G	D _H	D_{l}
A	1	0	0	0	0	0	0	0	0
В	0	1	0	0	0	0	0	0	0
C	0	0	1	0	0	0	0	0	0
D	0	0	0	1	0	0	0	0	0
E	0	0	0	0	1	0	0	0	0
F	0	0	0	0	0	1	0	0	0
G	0	0	0	0	0	0	1	0	0
н	0	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	0	

ГРУППИРОВКА ЗНАЧЕНИЙ КАТЕГОРАЛЬНОЙ ПЕРЕМЕННОЙ (ПО ОТКЛИКУ ИЛИ ЭКСПЕРТНО)

Level	D _{ABCD}	D _B	D _C	D_D	D _{EF}	D _F	D _{GH}	D_H	D_{l}
A	1	0	0	0	0	0	0	0	0
В	1				0		0		
C	1				0		0		
D	1				0		0		
E	0				1		0		
F	0				1		0		
G	0				0		1		
н	0				0		1		
1	0				0		0		

это делать умеет компонента