


**Лекция 5:** Предобработка данных

Мартынюк Полина Антоновна

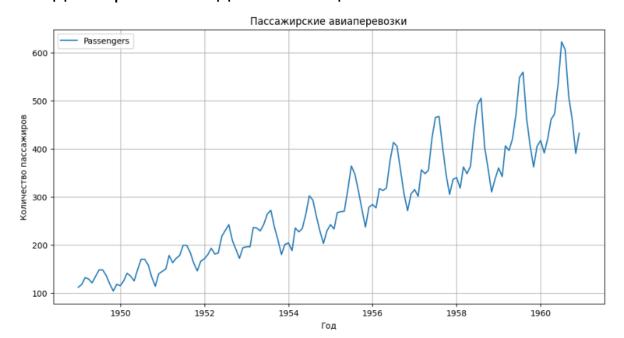
telegram: @PAMartynyuk

email: pa-martynyuk@yandex.ru



# Числовые данные: непрерывные и дискретные значения

#### Датасет «diamonds»


- carat (караты): Вес бриллианта, измеряемый в каратах.
- **depth (глубина)**: Процент глубины бриллианта относительно его диаметра.
- table (стол): Процент ширины верхней части бриллианта относительно его диаметра.
- price (цена): Цена бриллианта в долларах США.
- х (длина): Длина бриллианта в миллиметрах.
- у (ширина): Ширина бриллианта в миллиметрах.
- z (глубина): Глубина бриллианта в миллиметрах.

|       | carat | depth | table | price | X    | y    | Z    |
|-------|-------|-------|-------|-------|------|------|------|
| 0     | 0.23  | 61.5  | 55.0  | 326   | 3.95 | 3.98 | 2.43 |
| 1     | 0.21  | 59.8  | 61.0  | 326   | 3.89 | 3.84 | 2.31 |
| 2     | 0.23  | 56.9  | 65.0  | 327   | 4.05 | 4.07 | 2.31 |
| 3     | 0.29  | 62.4  | 58.0  | 334   | 4.20 | 4.23 | 2.63 |
| 4     | 0.31  | 63.3  | 58.0  | 335   | 4.34 | 4.35 | 2.75 |
|       |       |       |       |       |      |      |      |
| 53935 | 0.72  | 60.8  | 57.0  | 2757  | 5.75 | 5.76 | 3.50 |
| 53936 | 0.72  | 63.1  | 55.0  | 2757  | 5.69 | 5.75 | 3.61 |
| 53937 | 0.70  | 62.8  | 60.0  | 2757  | 5.66 | 5.68 | 3.56 |
| 53938 | 0.86  | 61.0  | 58.0  | 2757  | 6.15 | 6.12 | 3.74 |
| 53939 | 0.75  | 62.2  | 55.0  | 2757  | 5.83 | 5.87 | 3.64 |

### Числовые данные: временные ряды

#### Датасет «Airline Passengers»

"Датасет пассажирских авиаперевозок" (Airline Passengers Dataset) содержит данные о числе пассажиров, перевозимых авиакомпанией с января 1949 года по декабрь 1960 года по месяцам.



|     | Month   | Passengers |
|-----|---------|------------|
| 0   | 1949-01 | 112        |
| 1   | 1949-02 | 118        |
| 2   | 1949-03 | 132        |
| 3   | 1949-04 | 129        |
| 4   | 1949-05 | 121        |
|     |         |            |
| 139 | 1960-08 | 606        |
| 140 | 1960-09 | 508        |
| 141 | 1960-10 | 461        |
| 142 | 1960-11 | 390        |
| 143 | 1960-12 | 432        |

# Категориальные данные

#### Датасет «Iris»

Датасет содержит информацию о 150 образцах ирисов, по 50 образцов из каждого из трех видов ирисов:

- Ирис щетинистый (Iris setosa)
- Ирис версиколор (Iris versicolor)
- Ирис виргинский (Iris virginica)

|     | sepal_length | sepal_width | petal_length | petal_width | species   |
|-----|--------------|-------------|--------------|-------------|-----------|
| 0   | 5.1          | 3.5         | 1.4          | 0.2         | setosa    |
| 1   | 4.9          | 3.0         | 1.4          | 0.2         | setosa    |
| 2   | 4.7          | 3.2         | 1.3          | 0.2         | setosa    |
| 3   | 4.6          | 3.1         | 1.5          | 0.2         | setosa    |
| 4   | 5.0          | 3.6         | 1.4          | 0.2         | setosa    |
|     |              |             |              |             |           |
| 145 | 6.7          | 3.0         | 5.2          | 2.3         | virginica |
| 146 | 6.3          | 2.5         | 5.0          | 1.9         | virginica |
| 147 | 6.5          | 3.0         | 5.2          | 2.0         | virginica |
| 148 | 6.2          | 3.4         | 5.4          | 2.3         | virginica |
| 149 | 5.9          | 3.0         | 5.1          | 1.8         | virginica |

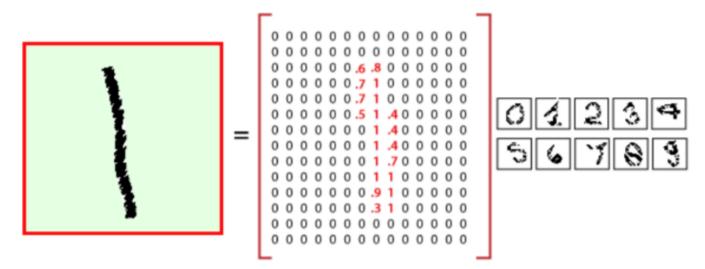
## Категориальные данные

#### • Бинарные

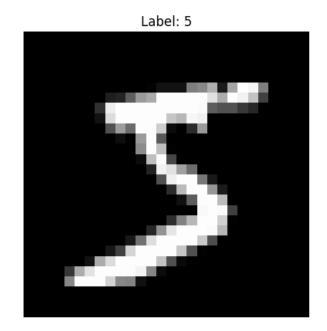
Всего 2 категории (класса)

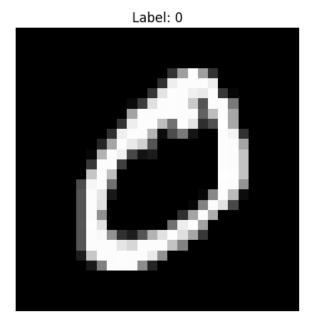
#### • Небинарные

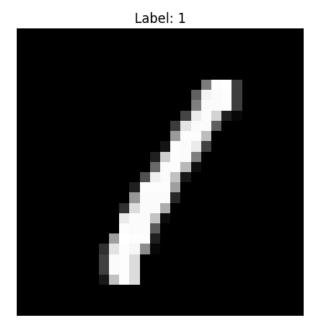
Произвольное число категорий (классов)


#### Текст

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.


# Изображения


Изображения представляются в цифровой форме с использованием **пикселей**. Каждый пиксель имеет определенный цвет, который может быть представлен в формате ЧБ (черно-белое изображение) или RGB (красный, зеленый, синий) или в других цветовых пространствах. Значения цветовых каналов для каждого пикселя могут быть использованы как признаки для обучения моделей.

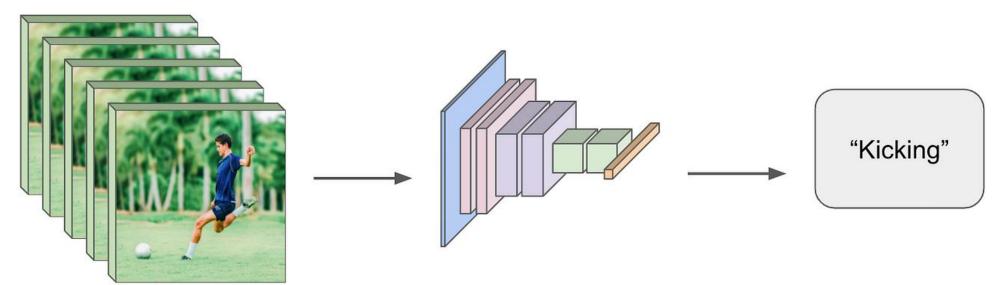

**Размеры изображений** могут варьироваться от небольших значений (например, 28x28 пикселей для MNIST) до высоких разрешений для фотографий.



# Изображения







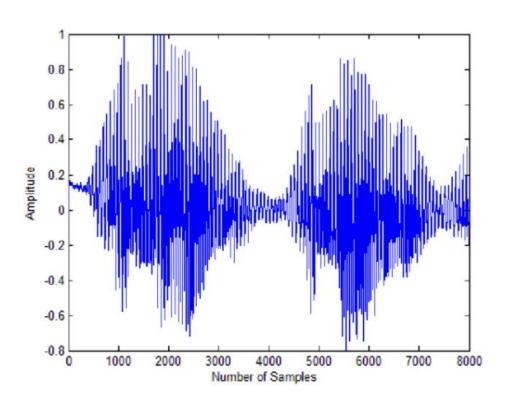

# Видео

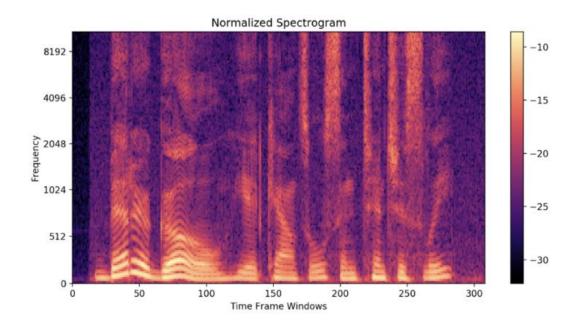
#### Bounding boxes

# car

#### Изображения + Временные ряды




**Input Video** 


**Deep Network** 

**Semantic Classification** 

# Аудио и речь

#### Преобразование в изображение (преобразование Фурье)





### Проверка качества данных: NaN

Пропущенные значения – NaN (np.nan)

#### NaN превращает любую операцию с собой в NaN

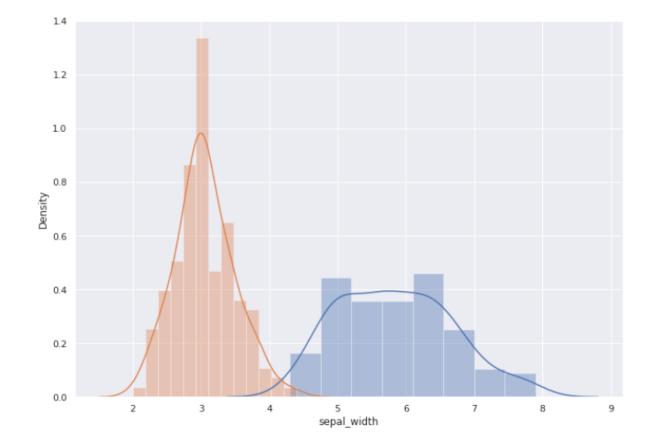
|   | Name           | Age  | Gender | Seat Class | Ticket Price |
|---|----------------|------|--------|------------|--------------|
| 0 | John Doe       | 32.0 | Male   | Business   | 1000         |
| 1 | Jane Smith     | 45.0 | Female | Economy    | 500          |
| 2 | Bob Johnson    | NaN  | Male   | Economy    | 450          |
| 3 | Susan Williams | 28.0 | Female | NaN        | 600          |

# Проверка качества данных: NaN

#### Пути решения:

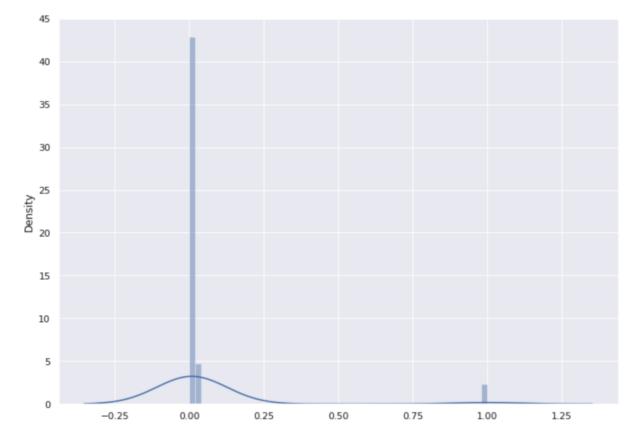
- Удаление строк или столбцов: В Pandas, для удаления строк с отсутствующими значениями, можно использовать df.dropna(), а для удаления столбцов df.dropna(axis=1).
- Заполнение средними значениями: Пропущенные значения можно заменить средними или медианными значениями из соответствующего столбца. В Pandas, для заполнения отсутствующих значений средними значениями можно использовать df.fillna(df.mean()).
- Интерполяция: Для временных рядов и числовых данных вы можете использовать метод интерполяции для заполнения отсутствующих значений на основе соседних значений.
- В случае самостоятельного сбора данных Валидация.

### Высокоуровневая работа с данными


- Агрегация
- Деагрегация
- Обогащение

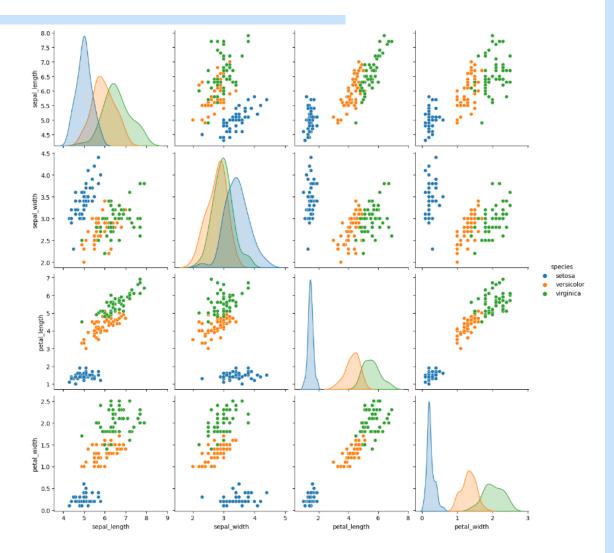
Классический пример - добавление географических данных:

Если у вас есть данные о клиентах и их почтовых адресах, вы можете обогатить эти данные, добавив информацию о географических координатах, чтобы знать, где находятся ваши клиенты.

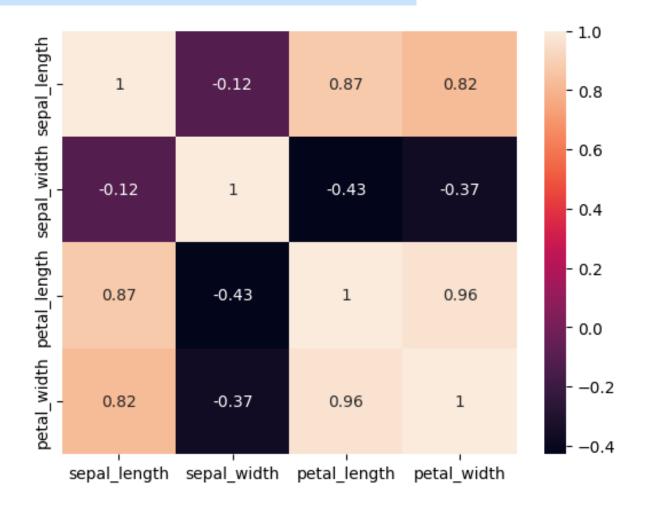

• Гистограммы: показывают частоту встречаемости

значений




• Выбросы и аномалии: их можно обработать

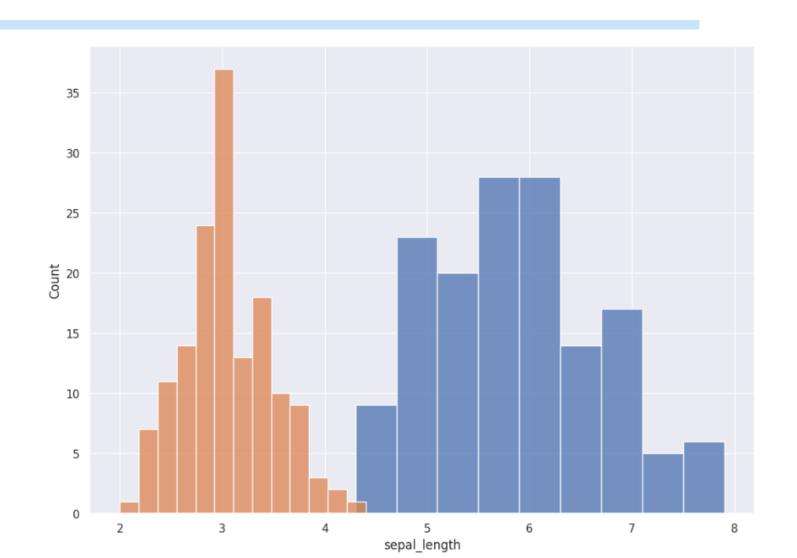
отдельно




#### • Pairplot:

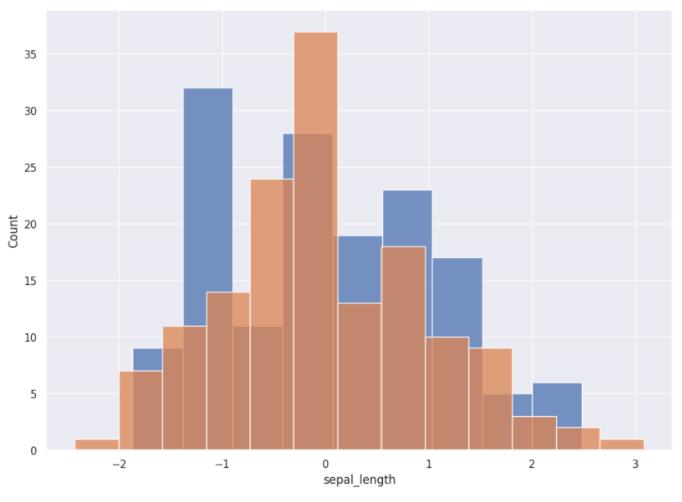
зависимость признаков друг от друга, гистограммы для каждого признака




• Корреляция, heatmap: связанность признаков друг с другом

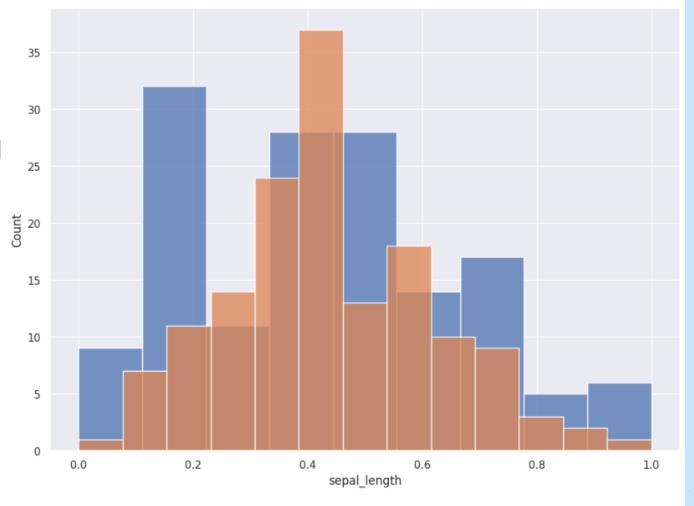


#### • Разные диапазоны


|   | Дом   | Площадь (кв. футов) | Цена (\$) | Число спален | Год постройки |
|---|-------|---------------------|-----------|--------------|---------------|
| 0 | Дом 1 | 1500                | 250000    | 3            | 1990          |
| 1 | Дом 2 | 2200                | 450000    | 4            | 2005          |
| 2 | Дом 3 | 1700                | 350000    | 3            | 1985          |
| 3 | Дом 4 | 1200                | 150000    | 2            | 1970          |

$$y = x_1 w_1 + x_2 w_2 + \ldots + x_p w_p + b$$




• Нормализация: распределение данных центрируется вокруг нуля

$$X' = rac{X - X_{min}}{X_{max} - X_{min}}$$



• Стандартизация: распределение данных центрируется вокруг нуля и стандартное отклонение равно единице

$$X' = \frac{X - \mu}{\sigma}$$



# Предобработка данных: категориальные данные

• Определить порядок:

отсортировать значения



0<1<2<3<4<5<6



# Предобработка данных: категориальные данные

• Как быть с номинальными значениями, для которых нельзя определить отношения порядка?

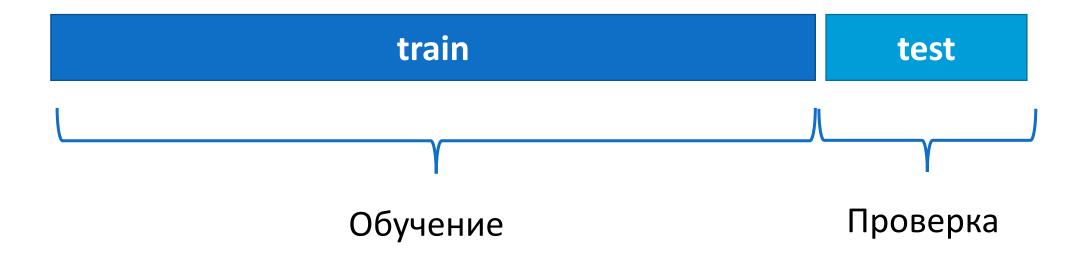
|   | Район          |
|---|----------------|
| 0 | Манхэттен      |
| 1 | Бруклин        |
| 2 | Квинс          |
| 3 | Бронкс         |
| 4 | Ста́тен-Айленд |



# Предобработка данных: категориальные данные

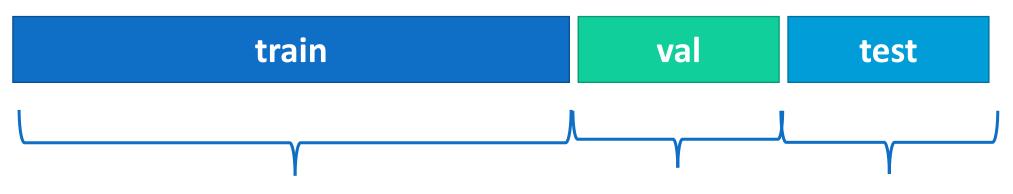
• One-hot encoding: превращает классы в вектор с одной единицей (эффективен при сравнительно малом числе классов)

|   | Район          | P | айон_Бронкс | Район_Бруклин | Район_Квинс | Район_Манхэттен | Район_Ста́тен-Айленд |
|---|----------------|---|-------------|---------------|-------------|-----------------|----------------------|
| 0 | Манхэттен      | 0 | 0           | 0             | 0           | 1               | 0                    |
| 1 | Бруклин        | 1 | 0           | 1             | 0           | 0               | 0                    |
| 2 | Квинс          | 2 | 0           | 0             | 1           | 0               | 0                    |
| 3 | Бронкс         | 3 | 1           | 0             | 0           | 0               | 0                    |
| 4 | Ста́тен-Айленд | 4 | 0           | 0             | 0           | 0               | 1                    |


# Деление на train/val/test

Почему обучать модель на всём датасете – плохая идея?

#### train


# Деление на train/val/test

Обучающие и тестовые данные



# Деление на train/val/test

Обучающие, валидационные и тестовые данные



Обучение Валидация Проверка (несколько моделей с разными (для подбора лучшей гиперпараметров) модели

# Деление датасета

#### train\_test\_split

```
[ ] from sklearn.model_selection import train_test_split
```

```
[ ] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
```

### Спасибо за внимание!

Конец Лекции 4