
A Reconfigurable RTOS with HW/SW Co-scheduling for SOPC

Qingxu Deng, Shuisheng Wei, Hai Xu, Yu Han, Ge Yu
Department of Computer Science and Engineering

Northeastern University, China

xhsoldier@163.com

Abstract

Emerging reconfigurable hardware, SOPC (System

On Programmable Chip), requires a RTOS to reuse the
abundant source code. This paper presents a RTOS

with the ability to co-schedule HW/SW, and discusses

its architecture in detail for SOPC. The paper

addresses an efficient run-time partitioning algorithm
for block partitioning of FPGA. At last, a case study

will be presented to validate our approach. The RTOS

can decreases NRE costs and facilitates integrating

hardware and software seamlessly.

1. Introduction

Emerging trends in system design indicate that in
the future, more roles will be played by System-on-
Chip (SoC) platforms consisting of general-purpose,
configurable components [1].For example, it enables
designers to utilize a large FPGA that contains both
memory and logic elements along with an IP processor
core. The increasing densities and reconfiguration
modes of SRAM-based field-programmable gate arrays
(FPGAs) and configurable systems on a chip (CSoCs)
advocate more dynamic uses of these components.
These impose strict demands on system
implementation technology. High performance
requires application-specific architectures, but
flexibility and system agility require a programmable,
adaptable approach. Qingxu Deng and Hai xu have
presented a methodology which is used for helping to
design system platform for SOPC [2].

All our efforts are resolving issues of software reuse
and hardware reconfiguration. We present a RTOS
with HW/SW co-scheduling to manage the system
physical resources and to help designers building their
software platform. The RTOS forms an abstraction that
hides the details of the underlying technology from the
developer and decreases Time-to-market and Non-
Recurring Engineering (NRE) costs. It also increases
the reuse of software and the flexibility of hardware,

and facilitates a natural style of hardware/software co-
design for embedded system.

The remainder of this paper is organized as follows.
Section 2 presents a survey of related work in
configurable OS for SoC. Section 3 shows the
architecture of our RTOS and some concepts. In
section 4, how to manage and utilize the reconfigurable
resource is presented, and expatiate a partitioning
algorithm. Hardware/software co-scheduling is
presented in Section 5. Section 6 gives a case study
and concludes the paper.

2. Related Works

In this section, we briefly survey a selection of
related work in the area of runtime reconfigurable
platform operating system. As the complexity of SOC's
architecture and application increases, reconfigurable
hardware operating systems become a rather new line
of research. The first description of hardware
multitasking is due to Brebner [3]. He raised the issue
of managing a virtual hardware resource. He proposed
decomposing reconfigurable computing applications
into swappable logic units (SLUs). Recently, Wigley et
al. discussed OS services including device partitioning,
placement and routing [4]. In [8], Mignolet et al.
introduce relocatable tasks which can be executed
either in software or in hardware, depending on the
available resources and the performance required.
Herbert Walder and Marco Platzner further the study
of re-configurable hardware operating systems in a top-
down manner [9].

In summary they don't provide feasible and unified
hardware and software platform. Some ones only
present a prototype or concepts. Our RTOS focus on
software reuse and hardware reconfiguration to help
the designers building their software platform. At the
same time, it stresses real-time response and whole
performance, and utilizes least hardware to satisfy the
requirements.

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

3. System Model and Concepts

Commercial RTOSs available for popular
embedded processors enable the development of
software-based real-time systems and significantly
shorten the design period. But they typically take no
advantage of hardware to implement any of their
functions, probably because processors and custom
hardware accelerators have historically resided on
separate chips. Although sufficient for a limited
number of RISC/DSP processors, these pure software
kernels are of limited use for heterogeneous,
dynamically reconfigurable designs.

We present a RTOS with HW/SW co-scheduling to
combine the software's reuse and hardware's
performance. It gives the HW with OS level support.
Its architecture is shown in Figure 1.

Figure 1. System architecture.

The application should be designed in an uniform
HW/SW design environment. The application consists
of several software tasks and hardware tasks. Hardware
task is actually a circuit that can be configured and
executed onto the device without affecting other
currently running circuits. As for calling it task is to be
consistent with the dynamic nature of software task.
The task is the least execution unit in our system. We
highly abstract the hardware task and software task
with uniform interface to facilitate partitioning and co-
scheduling them.

The kernel of RTOS provides multiple system
services: managing resources, co-scheduling tasks,
communicating between tasks and so on. Resources
management is a general service that includes
partitioning the reconfigurable area, managing the
memory and mapping I/O devices. The communication
service allows tasks interact with messages, regardless
of hardware tasks or software tasks. We put forward
software abstract layer (SAL) and hardware abstract
layer (HAL) to facilitate co-scheduling and
communicating. The SAL takes the application as
input, and the partitioning of the tasks can be decided
in consideration of designer's setting. The decision also
can be made automatically for an efficient execution.
The HAL is consists of IAL (IP core abstract layer)

and FAL (FPGA abstract layer). We utilize it to
abstract the IP core and reconfigurable logic to provide
uniform interface.Its main aim is to port and utilize
them conveniently.

4. Reconfigurable Resource Management

The partitioning and placement is an important
issue in reconfigurable resource management. M.
Gericota[10] and M. Handa[11] let us know that
fragmentation of the FPGA's resources cause low area
utilization in the dynamic reconfiguration systems.
Bazargan et al. [12] addressed the issue of placing
application mappings onto a single device for hardware
execution in a reconfigurable computing system.
Walder et al. [13] combined an enhanced form of
Bazargan's partitioning algorithm and a placement-
finding algorithm using 2D-hashing. Brebner and
Diessel [14], present a 1D area model where tasks can
be allocated anywhere along the horizontal dimension;
the vertical dimension is fixed.

In partially reconfigurable hardware platforms, the
problems of task and resource management are even
more strongly connected than in processor-based
platforms, which make the design of runtime systems
more challenging. We introduce an efficient
partitioning algorithm for runtime reconfigurable
platforms to achieve better hardware resources
utilization and real-time capability. Although the
algorithm seems somewhat simple, it can low the
overhead and response time of the kernel and can offer
a feasible partitioning solution.

Hai Xu [2] discusses the main issues involved
system behavioral description, HW/SW partitioning
and mapping them to a set of tasks. It is highly
desirable to perform the partitioning aiming at
minimizing the overall inter-task communication. The
shape of a hardware task is mostly modeled by a
rectangle as well as the routing resources used by the
task. The granularity of the resulting tasks is in itself
an important issue. The larger is the average size of the
tasks, the more tractable are the dynamic placement
and routing problems. However, smaller tasks create
more opportunities for task reuse, and thus potentially
minimize. The need for dynamic reconfiguration, our
current rule-of-thumb, is that a task should occupy no
less than 10

As follows, we simply discuss the algorithm. We
adopt 1D area model and partition the horizontal
dimension into segments (the size and number of the
segment are decided by designer or system), as Figure

2 shows.

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

Figure 2. Area partition.

Figure 3. Hardware task blocks.

So we can manage the area in linear memory. For
the area in segments, we logically divide them into
three types: blank area(no tasks used it before)running
area(there is a task running in it)reserved area it is
reserved for a periodic task running next time. Every
segment has a non-running area interval list which
records blank area interval and reserved area interval
(stores the interval points in sequence).When a task
applies the reconfigurable hardware resource, we check
the shape of it. If both the height (h) and the width (w)
of a task (h,w) exceed the segments' width(Wi),we
consider repartitioning the tasks into small sub-tasks
until an adequate task granularity is achieved. We
adopts compile and decompile technology for
repartitioning the task. Otherwise, we choose a
segment that can satisfy the task's requirement for
landing edge (width or height that is close to Wi). We
search the non-running area list of the segment, and
blank areas are considered first. If there are no
continuous blank areas, we consider occupying the
reserved area (search the similarest reserved area) or
merging reasonable blank area and reserved area. If
there is still not enough continuous area, we check
whether can preempt tasks (discussed in section 6). If
width (w) is the landing edge, we assign directly
corresponding height (h) of the resource (Figure 3 task
A,C,D). If height is(Figure 3 task B), we calculate the
utilization factor for height and width separately to see
whether is good for rotating the task. If the difference
of utilization factors, we call it Utilization Factor
Difference, is less than the value that designer has set

we make it a 90 clockwise rotation. We assume that
modules are relocatable, it is possible to change the
routing programmed into each cell to reflect the overall
rotation of the configuration. We always assign regular
resource area (h £ Wi), as Figure 4 shows. When the
task has executed, the periodic task can apply to
reserve the area that it has used, and system change the
running area into reserved area. So it can decrease the
configuration overhead. Other tasks free the resource
directly and the area interval is inserted into non-
running area interval list. At this time merging blank
area interval is involved(one's upper bound is equal to
the other's lower bound, eg.[4,5] and [5,10] into
[4,10]). Figure 5 shows the situations of task
placement. In consideration of the real-time
requirement, only when it is lower than the utilization
factor difference, we just rotate the task. If the HW/SW
partition is reasonable in the initial stage, and the task
granularity and segment's width are appropriate, there
are fewer chances to repartition the task.The
partitioning algorithmcan be customized with
requirements.

Figure 4. Resource block.

Figure 5. Task placement.

5. Hardware/Software Co-scheduling

5.1. Online Scheduling Issues

One of the first descriptions of hardware
multitasking is due to Brebner [3]. The preemption of
hardware tasks was investigated by Simmler et al. [5].
Diessel [16] discusses how to deal with partial
reconfiguration and multi-tasking for rearrangement of
tasks on FPGAs, which lacks real-time capabilities. H.
Walder[15] propose an online scheduling system that
allocates tasks to a block-partitioned reconfigurable
device. However, they didn't refer to HW/SW co-
scheduling.

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

There are several advantages for multitasking in
FPGA: First, parallel execution of several tasks in the
same FPGA is possible. Second, the programmer does
not need to care about resource sharing and so writing
FPGA designs is much easier, because each FPGA
design has the complete set of I/O resources available.
But the tasks have some restriction conditions for
hardware multitasking: relocatability, independence,
required cycles and so on. So we implement these tasks
in hardware and the others in software that are not
feasible for hardware multitasking. Our goal is holding
implementation efficiency and design flexibility.

The RTOS keeps track of the HW/SW tasks by
means of a uniform task information structure list.
Every task instantiation is linked to such a task
information structure. We divide tasks into types:
period/aperiodic, static/dynamic, preemptive/non-
preemptive, and every task have an exclusive priority.
There is a task state graph to show the kernel how to
schedule the HW/SW tasks, Figure 6.

Figure 6. Task state graph.

Figure 7. Co-scheduling structure.

The problems of scheduling tasks are strongly
interrelated with resource management in hardware
platforms. We discuss how to manage the
reconfigurable hardware resource and how to place the
tasks in section 4. We show the HW/SW co-scheduling
structure in Figure 7. Actuallywe suggest that should
decrease the chance of preempt the hardware task,
because it is a work with heavy time cost and memory
cost.

5.2. Uniform Communication between HW/SW

Tasks

By providing a uniform communication scheme for
hardware and software tasks, the kernel we developed
hides the complexity of co-scheduling tasks. In our
approach, communication between tasks is based on
message passing. Messages are transferred from one
task to another in a common format for both hardware
and software tasks, and have a priority. Both the
operating system and the hardware architecture should
support this kind of communication. At the same time
we provide event, mailbox and semaphore service. All
the communication services are achieved by sharing
memory. In our communication scheme, there are three
distinguished types of message passing between tasks.

Fig. 8. Message passing between tasks.
�

Table 1. Benchmark loop information.

As Figure 8 shows, messages between two tasks
that are scheduled in the soft CPU (T1 and T2), are
routed solely based on memory address and do not
pass the HAL. Communication between a software
task and a hardware task (T2 and T3) must pass
through the hardware abstraction layer. In this case, an
address mapping is performed by the communication
service. The task's physical address allows the HAL to
determine which task will receive the message.

5.3 Task Context Switch Issues

Consequently, the state of a preempted task can be
fully saved by pushing all the registers on the task

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

stack.This approach is not usable for a hardware task.
A FPGA design normally does not have a code or data
descriptor like a CPU. Instead of the handful of
registers and required to specify the state of a software
task (in addition to its memory contents), the hardware
process may have a large number of internal registers.
Rather, an FPGA holds data in several registers
scattered over the FPGA. It depicts its state in a
completely different way: state information is held in
several registers, latches and internal memory, in a way
that is very specific for a given task implementation.
There is no simple, universal state representation, as
for tasks executing on the CPU. Nevertheless, the
operating system will need a way to extract and restore
the state of a task executing in hardware, since this is a
key issue when enabling implement preemptive
scheduling. A way to extract and restore state when
dealing with tasks executing on the recon¯gurable
logic, is described in[5]. State extraction is achieved by
getting all status information bits out of the read back
bitstream. We should do our best to decrease the
situation of preempting the hardware tasks, because it
affects the real-time capability and needs lots of
memory. Furthermore, the FPGA was configured
within 70 ms and readback takes 800 ms. The memory
requirement is up to 350 Kbytes for a modern FPGA
device. Although we extract the state bits that are then
stored and form the basis for the reconstruction, and
the memory requirement is also about 300 Kbytes. We
use a high level abstraction of the state information for
hardware tasks, and the preemptive hardware task has a
memory area to store the state bits. When partitioning
the hardware and software tasks, we should cautiously
consider which task is preemptive.

6. Preliminary Results

We use Memec Virtex-4 LC Development Kit in
our experiment. The clock speed for the MIPS is 100
MHz at a supply voltage of 1.2V, and we used Xilinx's
Virtex Power Estimator [22] to estimate power for
each example. Here, we use an operating system, and
this cause the result di®erent from those of no
operating system supporting as for most of the test
cases. We examined several examples from Motorola's
Powerstone [21] benchmark suite: a voice encoder
(adpcm), a cyclic redundancy check (crc), a data
encryption standard (des), an engine controller
(engine), a fax decoder (g3fax), a JPEG decoder (jpeg),
a handwriting recognizer (summin), and a modem
encoder/decoder (v42). We implement each example,
using the input vectors in Powerstone, on an
instruction set simulator for an MIPS microprocessor,
augmented to output instruction traces. Table 1

summarizes the relevant loop data for our benchmarks.
Size indicates the total number of instructions in the
program, and Loop Instr is the number of instructions
in the region(s) moved to hardware. Loop Time is the
percentage of total execution time taken by the
region(s). CSL Size is the number of configurable
logic blocks required by those regions. The test results
for our method are summarized in Table2. Sw is the
total number of cycles to execute the example
completely in software. Loop in sw is the total cycles
required by the loop when running in software. Loop in
CSL is the number of cycles required by the loop when
running in custom hardware. Sw/CSL is the number of
cycles required to execute the entire program after
partitioning. Speed-up is the resulting speedup after
partitioning. Performance of Co-scheduling RTOS and
General RTOS are the test results of executing all the
bench marks at one time.
�

Table 2. Benchmark test results.

7. Conclusions and Future Work

As shown in the table 2, we conclude that using
such a RTOS for SOPC can greatly improve the
performance of embedded system. The higher
abstraction is, the better reuse will be. Such a HW/SW
co-scheduling RTOS will reuse the abundant resource
of source code, so it can decreases Time-to-market and
Non-Recurring Engineering (NRE) costs. The
flexibility of the hardware, reconfigurable system,
make the system meet many different kinds of
application requirements, and only making a few
changes will enable the system qualify for another kind
of application.

In the future, we expect the kernel support
transforming HW/SW tasks mutually to make best use
of software and hardware. SAL needs further
abstraction for HW/SW tasks, so less need for designer
to concern whether a task is SW or HW. We also plan

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

to extend our research to the configuration of
heterogeneous multi-processor systems.

References

[1] Krishna Sekar, Kanishka Lahiri, Sujit Dey. “Configurable
Platforms with Dynamic Platform Management: An Efficient
Alternative to Application-Specific System-on-Chips”.
Proceedings of the 17th International Conference on VLSI

Design (VLSID'04), IEEE, 2004

[2] Qingxu Deng, Hai Xu, etc. “An Embedded SOPC System
Using Automation Design”. ICPP05, IEEE, 2005

[3] G. Brebner. “A Virtual Hardware Operating System for
the Xilinx XC6200”. In Proceedings of the 6th International

Workshop on Field-Programmable Logic and Applications

(FPL), Springer,1996.

[4] G. Wigley, D. Kearney. “Research Issues in Operating
Systems for Reconfigurable Computing”. In Proceedings of

the International Conference on Engineering of

Reconfigurable System and Algorithms(ERSA), CSREA
Press, 2002.

[5] H. Simmler, L. Levinson, R. Manner. "Multitasking on
FPGA Coprocessors". In Proceedings of the 10th

International Workshop on Field Programmable Gate Arrays

(FPL), pages 121-130. Springer, 2000.

[6] G. Brebner, O. Diessel. “Chip-Based Reconfigurable
Task Management”. In Proceedings of the 11th International

Workshop on Field Programmable Gate Arrays (FPL), pages
182-191. Springer, 2001.

[7] H. Walder, M. Platzner. “Online Scheduling for Block-
partitioned Reconfigurable Devices”. In Proceedings of

Design, Automation and Test in Europe (DATE), pages 290-
295. IEEE Computer Society, March 2003.

[8] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, V. S., R.
Lauwreins. “Infrastructure for Design and Management of
Relocatable Tasks in a Heterogeneous Reconfigurable

System-on-Chip”. In Proceedings of Design, Automation and

Test in Europe (DATE), pages 986-991. IEEE Computer
Society, March 2003.

[9] Herbert Walder, Marco Platzner. “Reconfigurable
Hardware Operating Systems: From Design Concepts to
Realizations”. Engineering of Reconfigurable Systems and

Algorithms, pp: 284-287, 2003.

[10] M. Gericota, G. Alves, M. Silva, J. Ferreira. “Run-Time
Management of Logic Resources on Reconfigurable
Systems”, In Proc. of Design, Automation and Test in

Europe, Mar. 2003.

[11] M. Handa, R. Vemuri. “Area Fragmentation in Re-
configurable Operating Systems”. In Proc. of the

International Conference on Engineering of Reconfigurable

Systems and Algorithms. CSREA Press, Jun. 2004.

[12] Kiarash Bazargan, Ryan Kastner, Majid Sarrafzadeh.
“Fast Template Placement for Reconfigurable Computing
Systems”. In IEEE Design and Test of Computers, volume
17, pp 68-83, 2000.

[13] HerbertWalder, Marco Platzner. “Fast On-line Task
Placement on FPGAs: Free Space Partitioning and 2D-
Hashing”. 17th International Parallel and Distributed

Processing Symposium, 2004.

[14] Gordon Brebner, Oliver Diessel. “Chip-Based
Reconfigurable Task Management”. In Proc. 11th Intel

Workshop on Field Programmable Gate Arrays (FPL), pages
182-191, 2001.

[15] H. Walder, M. Platzner. “Online scheduling for block-
partitioned reconfigurable devices”. In Proceedings of the

Design, Automation and Test in Europe Conference and

Exhibition, Munich, Mar. 2003. 17.

[16] Diessel, O., H.ElGindy (1997). “Partial FPGA
Rearrangement by Local Repacking”. Technical Report 97-

02, Dept. of Comp. Sci. and Software Engr., Univ. of

Newcastle, Australia.

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

