Dynamic
Task Scheduling
Giorgio Buttazzo
Department of Computer Science

University of Pavia
E-mail: buttazzo@unipv.it

Handling shared
resources

Problems caused by
mutual exclusion

Priority Inversion

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

Deadline Inversion

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

45

Conflict on a critical section

T

B

b &

T2

!

TsH

o

Solution

Introduce a concurrency control protocol for

accessing critical sections.

46

Fixed Priority Protocols

¢ Non Preemptive Protocol (NPP)
¢ Highest Locker Priority (HLP)

e Priority Inheritance Protocol (PIP)
e Priority Ceiling Protocol (PCP)

¢ Immediate Priority Ceiling (IPC)

47

Dynamic Priority Protocols

¢ Dynamic Priority Inheritance (DPI)

¢ Dynamic Priority Ceiling (DPC)

¢ Dynamic Deadine Modification (DDM)
e Stack Resource Policy (SRP)

48

Stack Resource Policy [Baker 1990]

o It works both with fixed and dynamic
priority

It limits blocking to 1 critical section

It prevents deadlock

It supports multi-unit resources
o |t allows stack sharing
o |t is easy to implement

49

Stack Resource Policy [Baker 90]

e For each resource Ry: Ny
—
= Maximum units: Ny R, D:\:\:\:‘
= Available units: ny T
k

e For each task t; the system keeps:

= its resource requirements: H(RY)

poc T,

P 1/d,

EDF

= a priority p;: RM

= a static preemption level:

50

Stack Resource Policy [Baker 90]

Resource ceiling

Ci(n) = max { 7Ty <Iuj(Rk)}

System ceiling |I1, = m/ax{Ck(nk)}

SRP Rule

A job cannot preempt until
p; is the highest and =; > T1g

51

o

Example

!

SRP: Notes

¢ Blocking always occurs at preemption
time

e A task never blocks on a wait primitive
(semaphore queuee are not needed)

e Semaphores are still needed to update
the system ceiling

o Early blocking allows stack sharing

53

SRP: Stack sharing

Classical blocking stack

I .

s b

toh

Early blocking stack

R]

SRP: Stack sharing

If tasks can be grouped in M subsets with the
same preemption level, then tasks within a
group cannot preempt each other.

Then the stack size is the sum of the stack
memory needed by M tasks.

If we have 100 tasks with 10 preemption levels,
and each task requires 10 Kb of stack, then
1 Mb without SRP

Stack size =
100 Kb under SRP (90% less)

55

