
1

Dynamic
Task Scheduling

Giorgio Buttazzo

Department of Computer Science
University of Pavia

E-mail: buttazzo@unipv.it

2

Course Outline
• Some terminology

• Basic results on dynamic scheduling

• Resource sharing

• Aperiodic task handling

• Overload and QoS management

• Comparison with fixed priority scheduling

3

Problems of Fixed Priority
scheduling

• Low schedulability bound:
⇒ 0.69 in the worst case
⇒ 0.88 in the average case (1 for harmonic sets)

• In RM scheduling, each task is assigned a
priority proportional to its rate.
⇒ But the importance of a task may be independent

of its rate (think of temperature reading)
⇒ There are other timing parameters that we may

want to control
4

job τi,k

computation time
Ci,k

release time ri,k

start time si,k

finishing time fi,k

deadline di,k

Terminology
⇒ A task is a piece of code that can be

executed many times with different input data

⇒ A job (τi,k) is an instance of a task

5

Job parameters

ri,k release time (arrival time ai)
si,k start time
Ci,k worst-case execution time (wcet)
di,k absolute deadline
Di,k relative deadline: di,k - ri,k
fi,k finishing time

ri,k si,k fi,k di,k
t

τi,k
Ci,k

Di,k

6

Other parameters

ri,k si,k fi,k di,k
t

τi,k
ci,k(t)

Residual wcet: ci,k(t) ci,k(ri,k) = Ci,k

Slack (or laxity): di,k − t − ci,k(t)

Lateness: Li,k = fi,k − di,k

Response time: Ri,k = fi,k − ri,k

t

slack

Ri,k

8

43

Processor Demand Test

LLgDL ≤∈∀),0(,

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

1<U Handling shared
resources

Problems caused by
mutual exclusion

45

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

Priority Inversion

Deadline Inversion

46

Conflict on a critical section

τ3

B

τ2

τ1

Solution
Introduce a concurrency control protocol for
accessing critical sections.

47

Fixed Priority Protocols

• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Immediate Priority Ceiling (IPC)

48

Dynamic Priority Protocols

• Dynamic Priority Inheritance (DPI)

• Dynamic Priority Ceiling (DPC)

• Dynamic Deadine Modification (DDM)

• Stack Resource Policy (SRP)

8

43

Processor Demand Test

LLgDL ≤∈∀),0(,

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

1<U Handling shared
resources

Problems caused by
mutual exclusion

45

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

Priority Inversion

Deadline Inversion

46

Conflict on a critical section

τ3

B

τ2

τ1

Solution
Introduce a concurrency control protocol for
accessing critical sections.

47

Fixed Priority Protocols

• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Immediate Priority Ceiling (IPC)

48

Dynamic Priority Protocols

• Dynamic Priority Inheritance (DPI)

• Dynamic Priority Ceiling (DPC)

• Dynamic Deadine Modification (DDM)

• Stack Resource Policy (SRP)

8

43

Processor Demand Test

LLgDL ≤∈∀),0(,

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

1<U Handling shared
resources

Problems caused by
mutual exclusion

45

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

Priority Inversion

Deadline Inversion

46

Conflict on a critical section

τ3

B

τ2

τ1

Solution
Introduce a concurrency control protocol for
accessing critical sections.

47

Fixed Priority Protocols

• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Immediate Priority Ceiling (IPC)

48

Dynamic Priority Protocols

• Dynamic Priority Inheritance (DPI)

• Dynamic Priority Ceiling (DPC)

• Dynamic Deadine Modification (DDM)

• Stack Resource Policy (SRP)

8

43

Processor Demand Test

LLgDL ≤∈∀),0(,

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

1<U Handling shared
resources

Problems caused by
mutual exclusion

45

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

Priority Inversion

Deadline Inversion

46

Conflict on a critical section

τ3

B

τ2

τ1

Solution
Introduce a concurrency control protocol for
accessing critical sections.

47

Fixed Priority Protocols

• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Immediate Priority Ceiling (IPC)

48

Dynamic Priority Protocols

• Dynamic Priority Inheritance (DPI)

• Dynamic Priority Ceiling (DPC)

• Dynamic Deadine Modification (DDM)

• Stack Resource Policy (SRP)

8

43

Processor Demand Test

LLgDL ≤∈∀),0(,

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=
∑
=

1

)(
1*

1<U Handling shared
resources

Problems caused by
mutual exclusion

45

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

Priority Inversion

Deadline Inversion

46

Conflict on a critical section

τ3

B

τ2

τ1

Solution
Introduce a concurrency control protocol for
accessing critical sections.

47

Fixed Priority Protocols

• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Immediate Priority Ceiling (IPC)

48

Dynamic Priority Protocols

• Dynamic Priority Inheritance (DPI)

• Dynamic Priority Ceiling (DPC)

• Dynamic Deadine Modification (DDM)

• Stack Resource Policy (SRP)

9

49

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement
50

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

51

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

52

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

53

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queuee are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

54

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

9

49

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement
50

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

51

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

52

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

53

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queuee are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

54

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

9

49

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement
50

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

51

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

52

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

53

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queuee are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

54

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

9

49

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement
50

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

51

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

52

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

53

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queuee are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

54

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

9

49

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement
50

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

51

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

52

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

53

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queuee are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

54

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

9

49

Stack Resource Policy [Baker 1990]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section

• It prevents deadlock

• It supports multi-unit resources

• It allows stack sharing

• It is easy to implement
50

Stack Resource Policy [Baker 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

51

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Baker 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

52

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

53

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queuee are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

54

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

10

55

SRP: Stack sharing
• If tasks can be grouped in M subsets with the

same preemption level, then tasks within a
group cannot preempt each other.

• Then the stack size is the sum of the stack
memory needed by M tasks.

• If we have 100 tasks with 10 preemption levels,
and each task requires 10 Kb of stack, then

Stack size =
1 Mb

100 Kb

without SRP

under SRP (90% less)
56

Guarantee with resource
constraints

• Select a scheduling algorithm (e.g., EDF)
and a resource access protocol (e.g., SRP).

• Compute the maximum blocking times (Bi)
for each task.

• Perform the guarantee test including the
blocking terms.

57

Guarantee with RM
preemption
by HP tasks

τi

blocking by
LP tasks

()121
1

1
−≤

+
+∀ ∑

−

=

/i

i

ii
i

k k

k i
T

BC
T
Ci

58

1
1

1
≤

+
+∀ ∑

−

= i

ii
i

k k

k

T
BC

T
Ci

EDF Guarantee (Di = Ti)
preemption
by HP tasks

τi

blocking by
LP tasks

59

EDF Guarantee: PD test (Di ≤ Ti)

τ1

τi

...

τk

τn

Tasks are ordered by decreasing preemption level
60

EDF Guarantee: PD test (Di ≤ Ti)

∑
=

+−
+=

i

k
k

k

kk
ii C

T
TDLBLg

1
),0(

),max(: *
ini LDLDLi ≤≤∀∀

LLgi ≤),0(

∑

∑

=

=

−

−+
= i

k
k

i

k
kkki

i

U

UDTB
L

1

1*

1

)(

1<U AND

