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ABSTRACT. The scheduling of processes to meet deadlines is a difficult problem often
simplified by placing severe restrictions upon the timing characteristics of individual processes.
One restriction often introduced is that processes must have deadline equal to period. This
paper investigates schedulability tests for sets of periodic processes whose deadlines are
permitted to be less than their period. Such a relaxation enables sporadic processes to be
directly incorporated without alteration to the process model. Following an introduction
outlining the constraints associated with existing scheduling approaches and associated
schedulability tests, the deadline-monotonic approach is introduced. New schedulability tests
are derived which vary in computational complexity. The tests are shown to be directly
applicable to the scheduling of sporadic processes.
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1. INTRODUCTION
A real-time system is one in which failure can
occur in the time domain as well as in the more
familiar value domain. If the consequence of
such failure is catastrophic then the system is
often referred to as a hard real-time system. Such
systems are needed in a number of application
domains including air-traffic control, process con-
trol, and numerous embedded systems.

In the development of application programs
it is usual to map system timing requirements onto
process deadlines. The issue of meeting deadlines
therefore becomes one of process scheduling.
The development of appropriate scheduling algo-
rithms has been isolated as one of the crucial chal-
lenges for the next generation of real-time sys-
tems (Stankovic, 1988).

One scheduling method that is used in hard
real-time systems is based upon rate-monotonic
theory (Liu, 1973). At runtime a preemptive
scheduling mechanism is used: the highest prior-
ity runnable process is executed. Priorities
assigned to processes are inversely proportional to
the length of period. That is, the process with the
shortest period is assigned the highest priority.
Rate-monotonic scheduling has several useful
properties, including a simple "sufficient and not
necessary" schedulability test based on process
utilisations (Liu, 1973); and a complex sufficient
and necessary schedulability test (Lehoczky,
1989). However, the constraints that it imposes
on the process set are severe: processes must be
periodic, independent and have deadline equal to
period.

Many papers have successively weakened
the constraints imposed by the rate-monotonic
approach and have provided associated schedula-
bility tests. Reported work includes a test to
allow aperiodic processes to be included in the
theory (Sha, 1989), and a test to incorporate
processes that synchronise using semaphores
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(Sha, 1988). One constraint that has remained
within rate-monotonic literature is that the dead-
line and period of a process must be equal.

Deadline-monotonic (Leung, 1982) priority
assignment weakens this constraint within a static
priority scheduling scheme. However, no schedu-
lability tests were given in(Leung, 1982) for the
scheme.

The weakening of the "period equals dead-
line" constraint would benefit the application
designer by providing a more flexible process
model. For example, precedence constraints in a
distributed system can be modelled as a sequence
of periodic processes (one per processor). The
inevitable communication delay is modelled as an
interval of "dead time" at the end of each
processes period (apart from the last process in
the sequence). These periodic processes must
therefore complete their computations by a dead-
line that is before the end of the period. Such a
model has been used to good effect in a process
allocation scheme (Tindell, 1990) in which net-
work communication overhead is traded against
local schedulability. The greater the inter-
processor traffic the greater the "dead time" and
hence the lower the schedulability bound.
Tindell’s analysis (Tindell, 1990) uses the schedu-
lability tests discussed in this paper.

Another important motivation for weaken-
ing the "deadline equal to period" constraint is to
cater for sporadic (aperiodic) events in an efficient
manner. Here the required response time is not,
in general, related to the worst case arrival rate.
Indeed the characteristics of such events often
demand a short response time compared to
minimum inter-arrival time. Hence polling in a
periodic manner for sporadic events produces a
non-optimal response time for sporadic processes.

This paper outlines the deadline-monotonic
scheduling approach together with new simple
and complex schedulability tests that are sufficient
and in the latter case, necessary. The approach is
then shown to encompass sporadic processes that
have hard deadlines without any alteration to the
theory and without resorting to the inefficiencies
of a polling approach.



2. DEADLINE-MONOTONIC SCHEDUL-
ING THEORY

We begin by observing that the processes
we wish to schedule are characterised by the fol-
lowing relationship:

computation time ≤ deadline ≤ period

i.e. for each process i (where process 1 has the
highest priority and process n the lowest in a sys-
tem containing n processes):

Ci ≤ Di ≤ Ti
where C gives computation time, D the deadline
and T the period of process i .

Leung et al (Leung, 1982) have defined a
priority assignment scheme that caters for
processes with the above relationship. This is
termed inverse-deadline or deadline-monotonic
priority assignment. No schedulability tests were
given however.

Deadline-monotonic priority ordering is
similar in concept to rate-monotonic priority ord-
ering. Priorities assigned to processes are
inversely proportional to the length of the dead-
line (Leung, 1982). Thus, the process with the
shortest deadline is assigned the highest priority
and the longest deadline process is assigned the
lowest priority. This priority ordering defaults to
a rate-monotonic ordering when
period =deadline .

Deadline-monotonic priority assignment is
an optimal static priority scheme (see theorem 2.4
in (Leung, 1982) ). The implication of this is that
if any static priority scheduling algorithm can
schedule a process set where process deadlines are
unequal to their periods, an algorithm using
deadline-monotonic priority ordering for
processes will also schedule that process set.

It is true, of course, that any process sets
whose timing characteristics are suitable for rate-
monotonic analysis would also be accepted by a
static priority theory permitting deadlines and
periods of a process to differ.

In general the deadline-monotonic scheme
has not been employed because of the lack of ade-
quate schedulability tests. Rate-monotonic
scheduling schedulability tests could be used by
reducing the period of individual processes until
equal to the deadline. Obviously such tests would
not be optimal as the workload on the processor
would be over-estimated.

New schedulability tests have been
developed by the authors for the deadline-
monotonic approach (Audsley, 1990). These tests
are founded upon the concept of critical instants
(Liu, 1973). These represent the times that all
processes are released simultaneously. When
such an event occurs, we have the worst-case pro-
cessor demand. Implicitly, if all processes can
meet their deadlines for executions beginning at a
critical instant, then they will always meet their
deadlines. Thus, we have formed the basis for a
schedulability test: check the executions of all
processes for a single execution assuming that all
processes are released simultaneously. One such
schedulability test is given by2:
hhhhhhhhhhhhhhhhhh
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∀ i : 1 ≤ i ≤ n :
Di

Cihhh +
Di

Iihhh ≤ 1 (1)

where Ii is a measure of higher priority
processes interfering with the execution of
τi :3

Ii =
j = 1
Σ

i − 1 R
J
J Tj

Dihhh
H
J
J
Cj

The test states that for a process τi to be schedul-
able, the sum of its computation time and the
interference that is imposed upon it by higher
priority processes executing must be no more than
Di . In the above, the interference is composed of
the computation time of all higher priority
processes that are released before the deadline of
τi. This test is sufficient, but not necessary for the
following reason. When the interference is being
calculated, account is taken of executions of
higher priority processes that start before Di and
could possibly complete execution after Di .
Therefore, Ii could be greater than the actual
interference encountered by τi before Di .

A more accurate test is given by4:

∀ i : 1 ≤ i ≤ n :
Di

Cihhh +
Di

Iihhh ≤ 1 (2)

where
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J
Q

J
J
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The above test compensates within Ii for the parts
of executions of higher priority processes that
could not occur before Di even though they were
released before Di . The test is not necessary as a
pessimistic valuation is made of the time that will
be utilised by higher priority processes before Di .

The schedulability constraints given by
equations (1) and (2) are sufficient but not neces-
sary in the general case. To form a sufficient and
necessary schedulability test the schedule has to
be evaluated so that the exact interleaving of
higher priority process executions is known. This
is costly as this would require the solution of Di
equations per process τi.

The number of equations can however be
reduced by observing that if τi meets its deadline
at t ′ i , where t ′ i lies in [0, Di ], we need not evalu-
ate the equations in (t ′ i , Di ]. Further reductions
in the number of equations requiring solution can
be made by limiting the points in [0, Di ] that are
considered as possible solutions for t ′ i . Consider
the times within [0, Di ] that τi could possibly
meet its deadline. We note that the interference
due to high-priority processes is monotonically
increasing within this interval. The points in time
that the interference increases occur when there is
a release of a higher priority process. This is
illustrated by Fig. 1.
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Fig. 1. Interference Increases"

In Fig. 1 there are three processes with higher
priority than τ4. We see that as the higher priority
processes are released, I 4 increases monotonically
with respect to t . The graph is stepped with pla-
teaus representing intervals of time in which no
higher priority processes are released. It is obvi-
ous that only one equation need be evaluated for
each plateau as the interference does not change.

To maximise the time available for the exe-
cution of τi we choose to evaluate at the right-
most point on the plateau. Therefore, one possible
reduction in the number of equations to evaluate
schedulability occurs by testing τi at all points in
[0, Di ] that correspond to a higher priority pro-
cess release. Since as soon as one equation
identifies the process set as schedulable we need
test no further equations. Thus, the effect is to
evaluate equations only in [0, t ′ i ].

The number of equations has been reduced
in most cases. We note that no reduction will
occur if for each point in time in [0, Di ) a higher
priority process is released with τi meeting its
deadline at Di . The number of equations is
reduced yet further by considering the computa-
tion times of the processes. Consider Fig. 2.
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Fig. 2. Process Computation Time

In Fig. 2 the total computation requirement of the
process set (Cs ) is plotted against time. At the first
point in time when the outstanding computation is

equal to the time elapsed, we have found t ′4. In
the above diagram this point in time coincides
with the deadline of τ4.

Considering Fig. 2, there is little merit in
testing the schedulability of τi in the interval
[0, Ci ). Also, since time 0 corresponds with a
critical instant (a simultaneous release of all
processes) the first point in time that τi could pos-
sibly complete is:

t 0 =
j = 1
Σ
i

Cj

This gives a schedulability constraint of:

t 0

Ii
t0

hhh +
t 0

Cihhh ≤ 1

where

Iy
x =

z =1
Σ

y − 1 R
J
J Tz

xhhh
H
J
J

Cz

Since the value of t 1 assumes that only one release
of each process occurs in [0, t 0 ), the constraint
will fail if there have been any releases of higher
priority processes within the interval (0, t 0). The
exact amount of work created by higher priority
processes in this interval is given by:

Ii
t0

The next point in time at which τi may complete
execution is:

t 1 = Ii
t0 + Ci

This gives a schedulability constraint of:

t 1

Ii
t1

hhh +
t 1

Cihhh ≤ 1

Again, the constraint will fail if releases have
occurred in the interval [t 0, t 1). Thus, we can
build a series of equations to express the schedu-
lability of τi.

(1)
t 0

Ii
t0

hhh +
t 0

Cihhh ≤ 1

where t 0 =
j = 1
Σ
i

Cj

(2)
t 1

Ii
t1

hhh +
t 1

Cihhh ≤ 1

where t 1 = Ii
t0 + Ci

.

(k)
tk

Ii
tk

hhh +
tk

Cihhh ≤ 1

where tk = Ii
tk − 1 + Ci

and where

Iy
x =

z =1
Σ

y − 1 R
J
J Tz

xhhh
H
J
J

Cz

If any of the equations hold, τi is schedulable.
Obviously, the equations terminate if tk > Di for
process τi and equation k . At this point τi is
unschedulable.



The series of equations above is encapsu-
lated by the algorithm given in Fig. 3. The algo-
rithm progresses since the following relation
always holds:

ti > ti − 1

When ti is greater than Di the algorithm ter-
minates since τi is unschedulable. Thus we have a
maximum number of steps of Di . This is a
worst-case measure. We note that the algorithm
can be used to evaluate the schedulability of any
fixed priority process set where process deadlines
are no greater than periods, whatever the assign-
ment rule used for priorities.

Algorithm

foreach τi do

t =
j = 1
Σ
i

Cj

continue = TRUE

while I
L continue M

O do

if
I
J
L t

Ii
t

hh +
t

Cihhh ≤ 1
M
J
O

continue = FALSE

/* NB τi is schedulable * /

else

t = Ii
t + Ci

endif

if I
L t > Di

M
O

exit

/* NB τi is unschedulable * /

endif

endwhile

endfor

a
Fig. 3. Schedulability Algorithm

3. SCHEDULING SPORADIC PROCESSES
Non-periodic processes are those whose

releases are not periodic in nature. Such
processes can be subdivided into two categories
(Burns, 1991): aperiodic and sporadic. The
difference between these categories lies in the
nature of their release frequencies. Aperiodic
processes are those whose release frequency is
unbounded. In the extreme, this could lead to an
arbitrarily large number of simultaneously active
processes. Sporadic processes are those that have
a maximum frequency such that only one instance
of a particular sporadic process can be active at a
time.

When a static scheduling algorithm is
employed, it is difficult to introduce non-periodic

process executions into the schedule: it is not
known before the system is run when non-
periodic processes will be released. More
difficulties arise when attempting to guarantee the
deadlines of those processes. It is clearly impos-
sible to guarantee the deadlines of aperiodic
processes as there could be an arbitrarily large
number of them active at any time. Sporadic
processes deadlines can be guaranteed since it is
possible, by means of the maximum release fre-
quency, to define the maximum workload they
place upon the system.

One approach is to use static periodic pol-
ling processes to provide sporadics with execu-
tions time. This approach is reviewed in section
3.1. Section 3.2 illustrates how to utilise the pro-
perties of the deadline monotonic scheduling
algorithm to guarantee the deadlines of sporadic
processes without resorting to the introduction of
polling processes.

3.1. Sporadic Processes: the Polling Approach
To allow sporadic processes to execute

within the confines of a static schedule
(such as that generated by the rate-

monotonic algorithm) computation time must be
reserved within that schedule. An intuitive solu-
tion is to set up a periodic process which polls for
sporadic processes (Lehoczky, 1987). Strict pol-
ling reduces the bandwidth of processing as

g processing time that is embodied in
an execution of the polling process is
wasted if no sporadic process is
active when the polling process
becomes runnable;

g sporadic processes occurring after the
polling process’s computation time in
one period has been exhausted or just
passed have to wait until the next
period for service.

A number of bandwidth preserving algo-
rithms have been proposed for use with the rate-
monotonic scheduling algorithm (Lehoczky,
1987; Sha, 1989). These algorithms are founded
upon a periodic server process being allotted a
number of units of computation time per period.
These units can be used by any sporadic process
with outstanding computational requirements.
The computation time for the server is replenished
at the start of its period.

Problems arise when sporadic processes
require deadlines to be guaranteed. It is difficult to
accommodate these within periodic server
processes due to the rigidly defined points in time
at which the server computation time is replen-
ished. The sporadic server (Sha, 1989) provides a
solution to this problem. The replenishment times
are related to when the sporadic uses computation
time rather than merely at the period of the server
process. However, this approach still requires
additional processes with obvious extra over-
heads.

3.2. Sporadic Processes: the Deadline Mono-
tonic Scheduling Approach

We now show how deadlines of sporadic
processes can be guaranteed within the existing
deadline-monotonic theory. Consider the timing



characteristics of a sporadic process τs. The
demand for computation time is illustrated in Fig.
4.

τs
m m

τs
Released Ds

τs
Released Ds

τs
Released

t

Fig. 4. Sporadic Execution

The minimum time difference between suc-
cessive releases of τs is the minimum inter-arrival
time m . This occurs between the first two releases
of τs. At this point, τs is behaving exactly like a
periodic process with period m : the sporadic is
being released at its maximum frequency and so is
imposing its maximum workload. When the
releases do not occur at the maximum rate
(between the second and third releases in Fig. 4)
τs behaves like a periodic process that is intermit-
tently activated and then laid dormant. The work-
load imposed by the sporadic is at a maximum
when the process is released, but falls when the
next release occurs after greater than m time units
have elapsed.

In the worst-case the τs behaves exactly like
a periodic process with period m and deadline D
where D ≤ m . The characteristic of this
behaviour is that a maximum of one release of the
process can occur in any interval [t , t + m ] where
release time t is at least m time units after the pre-
vious release of the process. This implies that to
guarantee the deadline of the sporadic process the
computation time must be available within the
interval [t , t + D ] noting that the deadline will be
at least m after the previous deadline of the
sporadic. This is exactly the guarantee given by
the deadline-monotonic schedulability tests in sec-
tion 2.

For schedulability purposes only, we can
describe the sporadic process as a periodic process
whose period is equal to m . However, we note
that since the process is sporadic, the actual
release times of the process will not be periodic,
but successive releases will be separated by no
less than m time units.

For the schedulability tests given in section
2 to be effective for this process system, we
assume that at some instant all processes, both
periodic and sporadic, are released simultaneously
(i.e. a critical instant). We assume that this occurs
at time 0. If the deadline of the sporadic can be
guaranteed for the release at a critical instant then
all subsequent deadlines are guaranteed. Exam-
ples of this approach are given in (Audsley,
1990). No limitations on the combination of
periodic and sporadic processes are imposed by
this scheme. Indeed, the approach is optimal for a
fixed priority scheduling since sporadic processes
are treated in exactly the same manner as periodic
processes. All three schedulability tests outlined
in section 2 are suitable for use with sporadic
processes. To improve the responsiveness of
sporadic processes, their deadlines can be

reduced to the point at which the system becomes
unschedulable.

4. CONCLUSIONS
The fundamental constraint of rate-

monotonic scheduling theory has been weakened
to permit processes that have deadlines less than
period to be scheduled. The result is the
deadline-monotonic scheduling theory. Schedula-
bility tests have been presented for the theory.

Initially a simple sufficient and not neces-
sary schedulability test was introduced. This
required a single equation per process to deter-
mine schedulability. However, to achieve such
simplicity meant the test was overly pessimistic.
The simplifications made to produce a single
equation test were then partially removed. This
produced a sufficient and not necessary schedula-
bility test which passed more process sets than the
simple test. Again, the test was pessimistic.

This problem was resolved with the
development of a sufficient and necessary schedu-
lability test. This was the most complex of all the
tests having a complexity related to the periods
and computation times of the processes in the set.
The complexity was reduced substantially when
the number of equations required to determine the
schedulability of a process were minimised. This
test is able to determine the schedulability of any
fixed priority process set where deadlines are no
greater than periods, whatever the priority assign-
ment criteria used.

Proposed methods for guaranteeing dead-
lines of sporadic processes using sporadic servers
within the rate-monotonic scheduling framework
were shown to have two main drawbacks. Firstly,
one extra periodic server process is required for
each sporadic process. Secondly, an extra run-
time overhead is created as the kernel is required
to keep track of the exact amount of time the
server has left within any period. The deadline-
monotonic approach circumvents these problems
since no extra processes are required: the sporadic
processes can be dealt with adequately within the
existing periodic framework.

A number of issues raised by the work out-
lined in this paper require further consideration.
These include the effect of allowing processes to
synchronise and vary their timing characteristics.
These issues remain for further investigation,
although it is the authors’ contention that the
analysis that has been focussed upon the rate-
monotonic approach shows that deadline-
monotonic schedulability theory is easily extensi-
ble to address such issues.
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