
Journal of the Operations Research 
Society of Japan 

Vol. 39, No. 3, September 1996 

MINIMIZING TOTAL TARDINESS FOR SINGLE MACHINE 
SEQUENCING 

Tsung-Chyan Lai Yuh-Kwo Kuo 
National Taiwan University 

(Received July 18, 1994; Final January 18, 1996) 

Abstract We consider the single machine sequencing problem in which each job has a processing time 
and a due date. The objective is to  find a sequence of n jobs which minimizes the sum of the tardiness 
of each job. We present an O ( n  log n) MDD (Modified Due Date) rule which satisfies local optimality and 
show that the MDD rule has a worst-case performance ratio of $. The MDD rule is superior to  other known 
O(n log n )  heuristics in the sense of worst-case performance. 

1. Introduction 
We consider the single machine sequencing problem in which each of the n jobs i has a 
processing time p, on the machine and a due date d.. The objective is to minimize the 
total tardiness of the n jobs. The tardiness T, of job i is defined as max{O, C, - d.}, 
where C, is the completion time of job i. The problem is denoted by l// T, (Lawler et 
al. [S]). The complexity of the problem had remained unknown for over one decade until 
recently Du and Leung [3] showed that the problem is NP-hard. 

Branch and bound optimal algorithms [4, 6, 12, 14, 161 have been proposed by taking 
advantage of dominace rules [5] and tight lower bounds. Dynamic programming algorithms 

[l, 9, 13, 15, 171 are also available. Lawler [g] presented an O(n4 p*) or 0 ( n 5  max, {p,}) 
pseudopolynomial dynamic programming algorithm based on a decomposition theorem 
that the job, say k, with the largest processing time in a sequence in nondecreasing 
order of due dates can be placed only after the k-th position in an optimal sequence. 
The enumerative algorithm of Potts and Wassenhove [l31 also uses the decomposition 
theorem to partition the problem into subproblems, each of which is solved by the dynamic 
programming of Schrage and Baker [l51 when storage capacity permits. Based on the 
pseudopolynomial dynamic programming algorithm and data scaling, Lawler [l01 further 
presented an 0($)  fully polynomial approximation scheme, where e is the allowable 
deviation. 

In this paper, we present an O(n log n) MDD (Modified Due Date) rule which satisfies 
local optimality. 'Local optimality' means the optimality of two adjacent jobs in a given 
sequence, assuming that the other jobs are fixed. We show that the MDD rule has a 
worst-case performance ratio of F. The MDD rule is superior to other known O(n log n) 
heuristics in the sense of worst-case performance. This paper is organized as follows. We 
derive, in section 2, the worst-case performance ratio for the MDD rule and conclude with 
section 3. 

2. Analysis of the MDD Rule 
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In this section we present our main result on deriving the worst-case performance ratio 
of the MDD rule. Given a problem instance I, we let TH (I) represent the total tardiness 
generated by heuristic H and T*(I)  denote the minimum total tardiness. A worst-case 
performance ratio associated with heuristic H, denoted by qH , can be defined as follows: 

TH (I) 
r)H E sup{Ã‘Ã‘Ã for all problem instances I. 

I 

Let 0s (I) denote the sequence generated by heuristic H and a* (I) denote the optimal 
sequence corresponding to a problem instance I .  Also, we let Ty  (I) denote the tardiness of 

job j in aH (I)  and T* (I} the tardiness of job j in a* ( I ) .  In what follows, we will suppress 
the problem instance I and use TH , T*, aH , a*, T: and T* whenever no confusion arises. 

It is well-known that the SPT (Shortest Processing Time) rule, which sequences the 
jobs in nondecreasing order of pi, generates an optimal sequence if all the due dates are 
equal or if none of the n jobs can meet their due dates. The EDD (Earliest Due Date) rule, 
which sequences the jobs in nondecreasing order of d,, generates an optimal sequence if 
all the processing times are equal or if at most one job is tardy in the sequence generated 
by the EDD rule. 

If the criterion is minimization of maximum tardiness, the EDD rule (Jackson [7]) 
generates an optimal sequence. If the criterion is minimization of the number of tardy 
jobs, Moore's algorithm [l 1, 181 generates an optimal sequence. Moore's algorithm adopts 
the sequence generated by the EDD rule as the initial sequence. In each iteration, Moore's 
algorithm scans sequentially from the first position until a tardy job is found, and discards 
the job with the largest processing time among the scanned jobs. The process is repeated 
until no tardy jobs have been found. The final sequence is formed by appending all the 
discarded jobs in an arbitrary order to the undiscarded group in nondecreasing order of 
due dates. It is easy to show that the EDD rule has a worst-case performance ratio of nl, 
where nl is the number of tardy jobs in aED D ,  and Moore's algorithm (denoted by M) 
and the SPT rule are both arbitrarily bad. 

We now present the MDD rule, which can be viewed as a modified EDD rule. At 
time t ,  we use the index I, (t) = (t + p, - d,)+ + d, to select the next job for processing 
among the unsequenced jobs, where a small index value has a high priority and where 
(X)+ = max{O, X}. We note that the MDD rule can also be viewed as a modified SPT rule 
since at any time t ,  I, (t) is equivalent to I,!(t) = p, +(d, -(-p,)+ , where I, (t) = I,!(() +t. We 
note that I, (t) is also equivalent to I"(() = max{t + p,, d,}. As we will show in Theorem 
1, the MDD rule satisfies local optimality. 'Local optimality' means the optimality of two 
adjacent jobs in a given schedule assuming that the jobs preceding and following them are 
fixed. Consider two jobs i and j and let TLk (t) (h, k 6 {i, j } ,  h # k) denote the sum of 
the tardinesses of jobs h and k if job h precedes k. When no confusion arises, we will use 
Thk and Ih instead of T,ik (t) and IIL (t). 

We note that the MDD rule can be implemented in O(n log n) in a similar manner 
as the priority rule Ij (t) = 2(rj - t)+ + pj proposed by Chu [2] for the single machine 
sequencing problem l / r j  / E Fj using the notations by Lawler et al. [8]. Chu [2] showed 
that the priority rule I j( t)  = 2 ( r  - t)+ + p satisfies local optimality and showed that 
the priority rule has a worst-case performance ratio somewhere between and y. 
However, an exact bound was not derived. The following theorem shows that the MDD 
rule satisfies local optimality. We note that the MDD rule reduces to the EDD rule in 
case of equal processing times and reduces to the SPT rule in case of equal due dates. 
Since I" (t) = I, (t), we will also consider I" (t) in what follows. 
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Theorem 1. At any time t, Tij < Tji if I;' < I". 
Proof. First we note that 

zj = I ; ' + m a ~ { t + ~ ,  +pj ,  dj}-d, -dj  and T,, = Iit+max{t+pi +pj,  d,}-d, -dj. 

First consider the case that t +pi +pj > dj . Since I,!' < I;.' and since max{t +pi +p,, dj } < 
max{t + p; + pj, d;} in this case, we clearly have Tij  < T,,. We then consider the case 
that t +pi  + p j  < dj. Since max{t +p, + p j ,  d,} = d, = max{t +p j ,  d,} = I: in this 
case and since it is clear that I" < max{t + p, + p,, d,}, we have Tij  < Tji. 0 

Before we derive the worst-case performance ratio for the MDD rule, we first develop 
some properties associated with the MDD rule. For the derivation of q M  D D ,  if ties occur, 
we assume that the MDD rule selects the job with the larger processing time between 
two nontardy jobs, selects the job with the smaller due date between two tardy jobs, and 
selects the tardy job between a tardy job and a nontardy job; otherwise, selects the job 
with a smaller subscript. Whenever there is a choice in an optimal sequence, we sequence 
the job first with a smaller subscript. 

In the proofs of Lemmas 1(1), l(2) and 1(3), we apply a perturbation technique, 
where we perturb an instance I = (pi, dl ,  ... , pn, dn) to construct another instance 
I' at least as bad as I. Three types of perturbations are used in the following proofs. 
In type I perturbation, we increase a due date dh an infinitely small amount e. In type 
I1 perturbation, we decrease a due date dh an infinitely small amount e. In type I11 
perturbation, we both increase a processing time ph and decrease another processing time 
pj the same infinitely small amount e. Whenever we apply the perturbation technique, 
we assume that we consider the optimal sequence which remains unchanged after the 
perturbation in case there are alternative optimal sequences. We also assume that e is 
chosen such that both a^D D and a* remain unchanged after the perturbation. Another 
technique in constructing I' from I, where I' is at least as bad as 1, is deleting job n if 
job n is nontardy or aggregating several consecutive nontardy jobs into a single nontardy 
job. 

In what follows, we assume that, by renumbering the jobs, aM D D  (I) =(l 2 . . . n). 

Lemma 1. When deriving the worst-case performance ratio for the MDD rule, without 
loss of generality, given an instance I = (pl, d1 , . . . , pm, dn),  we can assume that 

(1) the first job is nontardy and the other jobs are tardy in ô  D D  ; 
(2) d. = d for all i; 
(3) P1 = dl. 

Proof. (l) We first show that we only need to consider an instance I = (pl , dl , . . . , p,, , dn) 
in which p; < di for all i. Therefore, Tt'{ D D  = 0. Suppose that pi > d;, where i is the 
smallest, in aM D D .  In constructing I' from I, we apply type I perturbation on job i. 

Suppose that TF D D  = 0, where h is the largest and 2 < h < n. Since we can delete 
job n from I to obtain I' if h = n, we can assume that 2 < h < n. If all the first h jobs are 
nontardy, then we can construct I' from I by aggregating all the first h jobs into a single 
job with a due date of dh and a processing time of E= pj . Thus, we can assume that 
job h', h' being the largest and h' < h, is tardy. We clearly can assume that h' = h - 1. 

Let job kl (k2) denote the job having identical processing time and due date with job 
h - 1 (h + l), where kl (k2) is the smallest with kl < h - l (k2 < h + 1). Also, let job ll 
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(l2) denote the job having identical processing time and due date with j o b  h - 1 (h + l), 
where ll (l2) is the largest with l1 > h - 1 (l2 > h + 1). 

Consider the case that job h + 1 is tardy in a*. We note that in this case job is 
tardy in # D D due to l 2  > h + 1 and job l 2  is also tardy in a* by our construction of G * .  

In constructing I' from I ,  we apply type I perturbation on job 12. 
Consider the case that job h + 1 completes earlier than dh+^  in a*. We note that in 

this case job k2 is strictly nontardy in a*. In constructing I' from I, we apply type I1 
perturbation on job k2. 

Consider the case that job h + 1 completes at dh+ l in a*. If job h - 1 precedes h + 1 
in a*, we know that job h - 1 is strictly nontardy and thus job k1 is strictly nontardy 
in a*. In constructing I' from I, we apply type I1 perturbation on job kl .  If job h + 1 
precedes h - 1 in a*, we know that job h - 1 is tardy and thus job 4 is tardy in a*. In 
constructing I' from I, we apply type I perturbation on job l l .  This completes our proof. 

(2) By Lemma 1(1), we can assume that the first job is nontardy and the other jobs are 
tardy. Suppose that dl = d2 = = dh < dh+ l .  We consider three cases: (i) job h is 
tardy in a* ,  (ii) job h completes earlier than d,L in o*, and (Hi) job h completes at  dh in 
a*. In case (Hi) we further consider two cases: job h + 1 precedes h in a* or the other 
way around. The proof is similar to that of Lemma l(1). 

(3) By Lemma 1(2), we can assume that d. = d for all i. Suppose that pi < d. If pi 5 p2, 
then aM D D  is an optimal sequence since by Lemmas l(1) and l(2) and by the definition 
of the MDD rule, we have p2 < p3 < < p,, . Consider the case that pi > p2. In this 
case we know that job 2 precedes job 1 in the optimal sequence. In constructing instance 
I' from I, we apply type I11 perturbation by both decreasing p2 and increasing pi the 
same infinitely small amount E .  0 

We now derive the worst-case performance ratio for the MDD rule. 

Proof. By Lemmas 1(1), 2(2) and 2(3), we can assume that = d a n d C r D D  > d  
for i 2 2, where C p D  = p; .  By the definition of the MDD rule, we have p2 < 

< S . .  p3 _ < pn. Clearly, we have 
n 

and 

Thus, we have 

Note that the second inequality holds since 0 < p2 < ps < 5 pn. Let 
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where 
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It is easy to verif; y by examining the partial derivatives of f that f is nondec reasing in pi 
if f is nondecreasing in pj, where 2 < i < j < n. On the other hand, it is easy to verify 
that f is nonincreasing in pj if f is nonincreasing in p,, where 2 < i < j < n. Also, it 
is easy to verify that f is nondecreasing in p2 and nonincreasing in p,, . Hence, we can 
assume that 0 < p2 = p3 = = pn in deriving g and therefore we have 

Hence, the second inequality holds. 
To show that the bound is tight, consider the example with n = K + 1 and d, = d 

for a l l i :  d = K, pi = K ,  p, = 1, i =  2, 3, ..., ^ + l .  Then, a M D D  = (1 2 ... n) 
T M D D  

with T M D D  = while o* = (2 3 ... n 1) with T* = K. Hence, we have - 

K ( K + l )  _ 2 
2K 2 "  o2  

3. Conclusion 
The O(n log n) MDD rule presented in this paper has a worst-case performance ratio 
of B- and is superior to other known O(n log n) heuristics (e.g. the EDD rule, the SPT 
rule, Moore's algorithm) in the sense of worst-case performance. It seems nontrivial to 
extend the MDD rule, which satisfies local optimality, to the total weighted tardiness 
problem. One avenue of further research is to seek such a priority rule for the total 
weighted tardiness problem. Another avenue of further research is to refine the MDD rule 
to achieve a constant (independent of n) worst-case performance ratio. Such a heuristic 

can be used to improve the 0($) fully polynomial approximation scheme by Lawler [l01 

to one with 0 ( 9 .  
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