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Modeling Preemptive EDF and FP by Integer Variables

Enrico Bini

Abstract The design of any system can be modeled by an optimization problem,

where a decision must be taken to maximize an overall utility function within some

constraints (that can be physical, contractual, etc.). In hard real-time systems the con-

straints are specified by the deadlines that are set for the completion of tasks. However

classic schedulability tests are formulated by algorithms that prevent a visualization of

the feasible region of the designer choices.

In this paper we formulate the EDF and FP exact schedulability conditions on a

single processor through a combination of linear constraints. We believe that this alter-

nate representation is better suited for optimization and can trigger the development

of more effective design methodologies for real-time systems.

1 Introduction

The design of any object or system can be formalized by an optimization problem: some

decisions must be taken such that an overall utility function is maximized within some

constraints. In real-time systems the feasibility constraint is expressed by a deadline

requirement: a task is required to complete no later than a specified time (deadline)

after its activation. Hence, it becomes crucial to find a representation of this constraint

that is well suited for optimization techniques.

Classic feasibility tests for Fixed Priority (FP) and Earliest Deadline First (EDF)

schedulers [14,4] do not reveal the geometry of the feasible parameters. Hence some

efforts must be dedicated to formulate the feasibility (deadline) constraint by alternate

expressions that enable an efficient implementation of the system design by optimiza-

tion techniques.

The schedule of jobs with known execution time is often represented by the start

time of each job as variable. In fact once all the start times are given a schedule is

unambiguously determined. Unfortunately this way of modeling becomes inappropriate

when the number of variable associated to the start times becomes infinite or unknown,

as in the following circumstances.
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1. If the lifetime of the system is potentially infinite and jobs are activated periodically

(and not only a finite number of times) then we should have one start time variable

per job. This leads to an infinite number of start times.

2. If the scheduling algorithm is preemptive then each job can be broken, by preempt-

ing jobs, into many contiguous chunks. This leads to an unknown number of start

times (one for each non-preempted chunk).

Finally, the explicit assignment of the job start times may be inconsistent with

the adopted scheduling algorithm, such as the EDF scheduling algorithm. EDF is

indeed widely used in real-time systems to schedule jobs with deadline because of its

optimality [17]: if it exists a job schedule that do not miss any deadline, then EDF will

not miss any deadline.

Hence in this paper we show a representation of the EDF and FP schedulability

condition in a way that is well suited for applying optimization techniques on the

task parameters. We introduce our notation and terminology. We consider a set T of

m periodic tasks executing on a single processor. Each task, denoted by τi, requires

the execution of a job every period Ti. The jth job of τi is often denoted by τi,j . All

the jobs of τi have the same execution time Ci. τi,j must complete not later than

Di time units after the activation. Di is called deadline of the task τi. The response

time of a job Ri,j is the time that elapses from its activation to its completion. The

response time of a task, simply called the response time, is Ri = supj Ri,j . The critical

scenario for τi is the scenario of task activations in which Ri is maximal. If tasks are

scheduled by preemptive EDF or FP, the critical scenario for all tasks occurs when

all tasks are activated simultaneously [17]. It is then convenient to set the instant

when all the tasks start activating their first job equal to 0. Given these hypothesis, it

follows that the activation of τi,j occurs at ai,j = (j − 1)Ti and its absolute deadline

is di,j = (j − 1)Ti + Di.

Task τi is also characterized by its utilization Ui = Ci

Ti
. It represents the fraction

of time that is required by the task. The sum of all the task utilizations U =
Pm

i=1 Ui

is the total utilization of the task set. It is straightforward to see that if U > 1, then

some deadline is going to be missed because the processor is overloaded.

Sometime we denote the task τi also by the triplet (Ci, Ti, Di) and the task set

T by (C,T,D), which are the vectors of computation times, periods, and deadlines,

respectively.

All these parameters Ci, Ti, and Di are real-valued. We extend the notion of least

common multiple also to positive real numbers meaning that, given a, b ∈ R+ then

lcm(a, b) = inf{x ∈ R+ : ∃p, q ∈ N+ x = p a = q b}

that is recursively defined also for a finite set of positive real number A = {ai}
m
i=1 as

follows

lcm(A) = lcm(ai, lcm(A \ {ai}))

We consider both EDF and FP scheduling algorithms [17]. EDF assigns the highest

priority to the job which has the earliest absolute deadline di,j . If two jobs have the

same absolute deadline, tie is broken arbitrarily. In FP all jobs belonging to the same

task have the same task priority. When using FP, we assume that tasks are indexed

by decreasing priority: i < j implies that τi has higher priority than τj . Tasks may not

have the same priority.



1.1 Related Works

The space of feasible EDF deadlines was derived by Bini and Buttazzo [7] although

the main result is justified based on geometric motivations and not formally proven. In

the same paper also a convex restriction of the space of feasible deadlines is derived.

Baruah and Bini [3] proposed a partitioning algorithm on multiprocessors, based on

convenient formalization of the uniprocessor schedulability conditions. Hermant and

George [12] proposed an effective simplification of the schedulability test using the

simplex method.

Several authors [10,2,13] independently proposed different algorithms for comput-

ing the minimum deadline of a newly arrived task, assuming the existing task set is

feasibly schedulable by EDF. The problem of these methods is that they can hardly

be extended to reduce a set of arbitrary deadlines, but can only be applied to a single

task at a time, following a given order, as suggested by [13].

When an FP scheduler is adopted, Bini and Buttazzo described the space of com-

putation times, given periods and deadlines [6]. Seto et al [18] described the space of

feasible periods. Bini and Di Natale [9] proposed a branch and bound algorithm for

assigning the optimal feasible period assignment.

2 EDF schedulability analysis

The schedulability analysis is developed to check whether some deadlines can be missed

or not. The classic way of performing schedulability analysis is based on the “demand-

supply” approach. In simple words, by this approach it is required that the work

demanded by the task set does not exceed the time supplied by the execution platform.

The necessary and sufficient schedulability condition for EDF was derived by Baruah

et al. [4,5].

Theorem 1 (Lemma 3 in [5]) The task set T = {(Ci, Ti, Di) : i = 1, . . . , m} is

schedulable by EDF if and only if:

∀t ≥ 0
m

X

i=1

max



0,

—

t + Ti −Di

Ti

�ff

Ci ≤ t (1)

The necessary and sufficient condition of Eq. (1) cannot be used in practice, since

it requires to check an infinite number of inequalities. Several works addressed the

problem of reducing the number of instants where the inequality of Eq. (1) can be

checked while preserving the necessity of the condition. First it can be observed that

for any pair of adjacent absolute deadlines da and db, if Eq. (1) is true at da then

it is also true ∀t ∈ [da, db[, because the left hand side of Eq. (1) remains constant

whereas the right hand side increases. This allows to restrict the test to the set of all

the absolute deadlines. The set of deadlines can be further reduced to a finite set by

using linear upper bounds of the demand [5].

2.1 Integer Problem Formulation

Unfortunately, the condition expressed by Theorem 1 is not well suited to be used in

optimizations, because the presence of the floor ⌊·⌋ operator breaks any property of



the constraints that is desirable for optimization (such as linearity). For this reason,

some efforts have been devoted to the derivation of alternative way to formulate the

necessary and sufficient condition for EDF schedulability.

The following Theorem provides a convenient way to formulate an equivalent con-

dition of Theorem 1 that is expressed by a combination of linear constraints.

Theorem 2 The task set T = {(Ci, Ti, Di) : i = 1, . . . , m} is schedulable by EDF if

and only if:

∀k ∈ N
m \ {0} ∃i ∈ Ik (Ti − Ci)ki −

X

j 6=i

Cjkj ≥ Ti −Di (2)

where

Ik = {j : kj 6= 0}

is the set of non-zero indexes in k.

Proof We will prove that Equations (1) and (2) are equivalent.

Eq. (1) ⇒ Eq. (2). We are given a vector k ∈ N
m different that 0 ∈ N

m and we

must find an index i in Ik = {j : kj 6= 0} using the hypothesis of Eq. (1).

Since k 6= 0 then Ik 6= ∅. Let us define

∀j ∈ Ik dj = Dj + (kj − 1)Tj

which is the absolute deadline of the kj job of τj . Notice that from kj ≥ 1 it follows

that dj ≥ 0.

We claim that the index i satisfying Eq. (2) is such that

di = max
j∈Ik
{dj} (3)

This value is well defined because Ik 6= ∅.
Now we exploit the Equation (1) for t = di. We have

m
X

j=1

max



0,

—

di + Tj −Dj

Tj

�ff

Cj ≤ di

max



0,

—

di + Ti −Di

Ti

�ff

Ci +
X

j 6=i

max



0,

—

di + Tj −Dj

Tj

�ff

Cj ≤ di

max {0, ki}Ci +
X

j 6=i

max



0,

—

di + Tj −Dj

Tj

�ff

Cj ≤ Di + (ki − 1)Ti

(Ti − Ci)ki −
X

j 6=i

max



0,

—

di + Tj −Dj

Tj

�ff

Cj ≥ Ti −Di (4)

Equation (4) is quite similar to Equation (2) that we want to prove. To conclude the

demonstration we need to find a lower bound of max
n

0,
j

di+Tj−Dj

Tj

ko

. We have

∀j ∈ Ik max



0,

—

di + Tj −Dj

Tj

�ff

≥

—

di + Tj −Dj

Tj

�

≥

≥

—

dj + Tj −Dj

Tj

�

= kj (5)



Similarly

∀j /∈ Ik max



0,

—

di + Tj −Dj

Tj

�ff

≥ 0 = kj (6)

Finally, from Equation (4) by using the lower bounds of Equations (5) and (6), it

follows that for the index i selected such that Eq. (3) holds, we have

(Ti − Ci)ki −
X

j 6=i

Cjkj ≥ (Ti − Ci)ki −
X

j 6=i

max



0,

—

di + Tj −Dj

Tj

�ff

Cj ≥ Ti −Di

as required.

Eq. (2) ⇒ Eq. (1). Given t ≥ 0, we build the mapping t 7→ k = (k1, . . . , km) ∈ N
m

defined by

kj = max



0,

—

t + Tj −Dj

Tj

�ff

Given this mapping, the Equation (1) that needs to be proved can be rewritten as

∀t ≥ 0

m
X

j=1

kjCj ≤ t (7)

For all the t ≥ 0 such that k = 0 we have

m
X

j=1

kjCj = 0 ≤ t

On the other hand, for all the t ≥ 0 such that k 6= 0 we can invoke Equation (2)

from which it follows that we have an index i ∈ Ik such that

(Ti − Ci)ki −
X

j 6=i

Cjkj ≥ Ti −Di

m
X

j=1

Cjkj ≤ (ki − 1)Ti + Di =

„—

t + Ti −Di

Ti

�

− 1

«

Ti + Di ≤
t−Di

Ti
Ti + Di

m
X

j=1

Cjkj ≤ t

Hence Equation (7) is demonstrated and the Theorem is proved.

Theorem 2 formulates the EDF schedulability by introducing the integers k. How-

ever the “physical” interpretation of Eq. (2) is lost, whereas Eq. (1) has the clear

interpretation of requiring that the amount of demand should not exceed the time

available to schedule the tasks. To extract a posteriori the physical interpretation of

Theorem 2 then we rewrite Eq. (2) as follows

∀k ∈ N
m \ {0} ∃i : ki ≥ 1 C · k ≤ (ki − 1)Ti + Di = di,ki

that is equivalent to

∀k ∈ N
m \ {0} C · k ≤ max

ki≥1
{di,ki

} (8)

Basically Eq. (8) asserts that the task set T is schedulable by EDF if and only if

for all possible number of jobs of each task (represented by the vector k), the amount

of all required computations C · k does not exceed the largest absolute deadline.

In the constrained deadline case (i.e. ∀i Di ≤ Ti) the schedulability test can be

simplified as reported in the following result.



Lemma 1 The task set T = {(Ci, Ti, Di) : i = 1, . . . , m} with constrained deadlines

is schedulable by EDF if and only if:

∀k ∈ N
m \ {0} ∃i = 1, . . . , m (Ti − Ci)ki −

X

j 6=i

Cjkj ≥ Ti −Di (9)

Proof We proceed by showing that if ∀i Di ≤ Ti then Equations (2) and (9) are

equivalent.

Eq. (2) ⇒ Eq. (9). This is the simpler implication. In fact since Ik ⊆ {1, . . . , m},
then the same index i that makes Eq. (2) true, makes true also Eq. (9).

Eq. (9) ⇒ Eq. (2). Given k, let i be the index in {1, . . . , m} that satisfies Eq. (9).

Let us assume, by absurd, that i /∈ Ik that means ki = 0. From Eq. (9) we have

m
X

j=1

Cjkj ≤ Di − Ti ≤ 0 ⇒ k = 0

that is impossible from the hypothesis. Hence the lemma is proven.

From now on we assume to have constrained deadlines to simplify the presentation

since the arbitrary deadline model does not present significant additional difficulties.

The schedulability condition expressed in this way is not practical, since it requires

to test on an infinite set (i.e. N
m \ {0}). However there are methods to reduce the test

to a finite set without losing necessity [7]. We do not discuss here these methods any

further.

The schedulability condition of Eq. (9), can also been seen as a covering problem.

We define

domKi = {k ∈ Z
m :

X

j 6=i

Cjkj − (Ti − Ci)ki ≤ Di − Ti} (10)

that basically is the set of integers that falls in an half-space. Then the schedulability

condition of Lemma 1 is equivalent to the following

N \ {0} ⊆
m
[

i=1

domKi (11)

3 FP schedulability analysis

Here we also report briefly a similar representation of the schedulability constraint that

applies to FP schedulers.

In preemptive FP schedulers any task is not affected by the lower priority tasks

because lower priority jobs can never execute when some higher priority job has not yet

finished. Hence the FP schedulability analysis is developed per task and the schedu-

lability of the entire task set T is ensured by the simultaneous verification of the

schedulability condition for each task. For this reason, without loss of generality, in

this section we consider only the schedulability of the lowest priority task τm. More-

over we examine only the constrained deadline case, since the extension to the arbitrary

deadline case follows standard techniques [15].

Two main classes of tests exist for FP schedulability analysis: the response time

analysis [11,14,1] and the time demand analysis [16].



In the response time analysis [11,14,1] the following algorithm

8

>

>

<

>

>

:

R
(0)
m ← Cm

R
(k+1)
m ← Cm +

m−1
X

i=1

&

R
(k)
m

Ti

’

Ci

(12)

is iterated until the sequence R
(k)
m converges to the response time Rm ≤ Dm of τm (in

this case τm is schedulable) or at some iteration it exceeds the deadline Dk (in this

case τm is not schedulable).

The time demand analysis [16] does not go through the computation of the re-

sponse time. Basically it looks for an instant within 0 and Dm that is large enough

to accommodate both the computation time Cm of τm and the maximum number

of interferences from higher priority tasks. This idea is represented by the following

Theorem

Theorem 3 (Theorem 1 in [16]) The task τm with constrained deadline Dm ≤ Tm

is schedulable by FP if and only if

∃t ∈ [0, Dm] Cm +
m−1
X

i=1

‰

t

Ti

ı

Ci ≤ t (13)

Both the approaches has the same defect of Theorem 1: the presence of a discon-

tinuous operator (the ceiling ⌈·⌉ in this case) makes difficult to use the schedulability

test as a description of the feasible region.

Fortunately, Seto et al. [18] found an alternate expression of the feasibility region.

Below we report their result, derived in the implicit deadline hypothesis, extended to

constrained deadline case.

Theorem 4 (Proposition 2.1 in [18]) The task τm is schedulable by FP if and

only if

∃k ∈ N
m−1

8

>

>

>

>

>

<

>

>

>

>

>

:

Cm +

m−1
X

j=1

Cjkj ≤ Dm

Cm +

m−1
X

j=1

Cjkj ≤ kiTi i = 1, . . . , m− 1

(14)

4 Future Works

In this paper we have illustrated methods for expressing the schedulability constraints

(both EDF and FP) by means of a combination of linear constraints. The next step

will be the formulation of the design goal by means of a utility function to be maxi-

mized, and the optimal solution of the design problem, following similar approaches as

proposed by Seto et al. [19] or Bini and Cervin [8].
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