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Abstract

This paper revisits utilization bounds for a periodic re-
source under the rate monotonic (RM) scheduling algo-
rithm. We show that the existing utilization bound, as pre-
sented in [8, 9], is optimistic. We subsequently show that
by viewing the unavailability of the periodic resource as
a deferrable server at highest priority, existing utilization
bounds for systems with a deferrable server [3, 11] can be
reused. Moreover, using this view, the utilization bound pre-
sented in [7] for hierarchical fixed-priority scheduling turns
out to be similar to the bound in [3].

1. Introduction

Today, fixed-priority pre-emptive scheduling (FPPS) is
a de-facto standard in industry for scheduling systems with
real-time constraints. A major shortcoming of FPPS, how-
ever, is that temporary or permanent faults occurring in one
application can hamper the execution of other applications.
To resolve this shortcoming, the notion of resource reserva-
tion [6] has been proposed. Resource reservation provides
isolation between applications, effectively protecting an ap-
plication against other, malfunctioning applications.

In a basic setting of a real-time system, we consider a set
of independent applications, where each application con-
sists of a set of independent, periodically released, hard
real-time tasks that are executed on a shared resource. We
assume two-level hierarchical scheduling, where a global
scheduler determines which application should be provided
the resource and a local scheduler determines which of the
chosen application’s tasks should execute. Although each
application could have a dedicated scheduler, we assume
FPPS for every application. For temporal protection, each
application is associated a dedicated reservation. We as-
sume a periodic resource model [8] for reservations.

In this paper, we consider least upper bounds for schedu-
lability of an application given a periodic resource, where

the local scheduler uses the rate monotonic (RM) schedul-
ing algorithm. We show that the existing utilization bound,
as presented in [8, 9], is optimistic. We subsequently show
that by viewing the unavailability of the periodic resource
as a deferrable server at highest priority, we can reuse exist-
ing utilization bounds for systems with a deferrable server
[3, 11]. We briefly discuss (i) two errors identified in the lat-
ter utilization bounds, (ii) the similarity between the bounds
in [7] for hierarchical FPPS and the bound in [3], and (iii) a
novel utilization bound as presented in [10].

This paper is organized as follows. In Section 2, we
briefly recapitulate the system model described in [8] and
the utilization bound for the RM algorithm. An example
refuting that bound is presented in Section 3. In Section 4,
we show how to reuse existing utilization bounds for sys-
tems with a deferrable server at highest priority. We discuss
utilization bounds in Section 5 and conclude the paper in
Section 6.

2. Recapitulation of existing results

This section briefly recapitulates the system model and
the utilization bound for the RM algorithm of [8].

We consider a workload model W , which describes the
applications, a periodic resource model Γ, which describes
the available resources, and a shared resource, i.e. a single
processor. For the workload model, we assume the periodic
task model of Liu and Layland [4]. Hence, we assume n
periodically released, independent tasks τ1, τ2, . . ., τn with
unique, fixed priorities, that do not suspend themselves, and
have arbitrary phasing. Each task τi is characterized by
(pi,ei), where pi is the period and ei is the computation
time. We assume that the tasks are given in order of de-
creasing priority, i.e. task τ1 has highest priority and task
τn has lowest priority. We use the rate monotonic (RM)
scheduling algorithm to schedule the tasks, i.e. we assume
p1 ≤ p2 ≤ ·· · ≤ pn.

A periodic resource model Γ(Π,Θ) characterizes a par-
titioned resource that guarantees allocations of Θ time units



Π

Θ Π−Θ Π−Θ Π−Θ

timetS

Γ

AJDS eDS

pDS

eDS eDS

τDS

Π Π

Θ Θ

pDS pDS

AJDS AJDS

Legend:

- resource supply

- worst-case interference by other periodic resources

- activation jitter

- execution

- activation

Figure 1. A situation with a worst-case (i.e. minimum) resource supply of a periodic resource Γ in an
interval starting at time tS, and a task τDS modeling the unavailability of the periodic resource Γ.

every Π time units, where a resource period Π is a positive
integer and a resource allocation time Θ is a real number in
(0,Π]. Figure 1 illustrates a situation with a worst-case (i.e.
a minimum) resource supply of a periodic resource Γ in an
interval starting at time ts. From this figure, we derive that
the longest interval without any resource supply from Γ has
a length of 2(Π−Θ).

Given a periodic resource Γ, the utilization bound
UBΓ(RM) of the RM scheduling algorithm is defined as a
number such that a periodic workload set W is schedulable
if

∑
τi∈W

ei

pi
≤ UBΓ(RM). (1)

The following theorem from [8] provides a utilization
bound for the RM scheduling algorithm.

Theorem 1 (Utilization Bound for RM Algorithm ([8]))
Given a periodic resource Γ(Π,Θ), a utilization bound
UBΓ(RM) of the RM scheduling algorithm for a set of m
periodic workloads is

UBΓ(RM) =
Θ
Π

(
m( m√2−1)−

m
√

2(Π−Θ)
p∗

)
, (2)

where p∗ is the shortest period of W.

3. Utilization bound from [8] refuted

Consider a periodic resource Γ(Π,Θ) and a periodic
workload set W consisting of 2 tasks τ1 and τ2, which are
characterized by (100,1) and (150,1), respectively. Hence,
the processor utilization UW of W is given by UW = e1

p1
+

e2
p2

= 1
100 + 1

150 = 1
60 . Let 2(Π−Θ) = p1, i.e. the worst-case

length 2(Π−Θ) of an interval of time without any resource
supply from Γ is equal to the period p1 of task τ1. Hence,

task τ1 is not schedulable. According to Theorem 1, the
workload W is schedulable when UW ≤ UBΓ(RM), i.e. for

1
60
≤ Π−50

Π

(
2( 2√2−1)−

2√2(50)
100

)
.

We can rewrite this latter relation to

Π≥ 50( 3
2

√
2−2)

( 3
2

√
2−2)− 1

60

.

The right-hand side of the relation is approximately 58. Ac-
cording to Theorem 1, the workload W is therefore schedu-
lable for Π = 60 and Θ = 10, which is obviously wrong; see
also Figure 2.
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Figure 2. A timeline with a deadline miss for
task τ1 at time t = 100.

4. Reusing existing utilization bounds

In this section, we show how to reuse existing utilization
bounds for systems with a deferrable server at highest pri-
ority for a periodic resource. To that end, we first show that



the unavailability of a periodic resource can be modeled as
a Deferrable Server (DS) task at highest priority. Next, we
show how to apply existing results.

4.1. Unavailability of the periodic resource

Figure 1 shows that for worst-case analysis purposes,
the unavailability of the periodic resource Γ can be mod-
eled as a (DS) task τDS with a (fixed) period pDS = Π, a
(fixed) computation time eDS = Π−Θ, and an activation
jitter AJDS = Θ; see also [1]. Similar results can be found
for the worst-case response time analysis of tasks with an
associated sporadic server as presented in [7].

4.2. A utilization bound

In [3, 11], least upper bounds on schedulability are pre-
sented for the rate monotonic scheduling algorithm for task
sets have a so-called Deferrable Server (DS) task τDS ex-
ecuting at highest priority and n ordinary periodic tasks
τ1,τ2, . . . ,τn. These papers make the following general as-
sumption

pDS ≤ p1 ≤ p2 ≤ ·· · ≤ pn. (3)

In [11], it is shown that p1
pDS

< 2 and pn
pDS

< 2+UDS are nec-
essary conditions for a task set to be a worst-case task set.
Next, for pn ∈ [kpDS +eDS,kpDS +2eDS), where k≥ 1, it is
shown that pn can be increased to p′n = kpDS + 2eDS. The
analysis is subsequently carried out by considering three
distinct cases:

1. pDS ≤ p1 ≤ . . .≤ pn < pDS + eDS;

2. pDS < pDS + eDS ≤ p1 ≤ . . .≤ pn < 2pDS + eDS;

3. pDS ≤ p1 ≤ . . . ≤ pk < pDS + eDS < pDS + 2eDS ≤
pk+1 ≤ ·· · ≤ pn ≤ 2pDS + eDS for some k, 1 ≤ k ≤
n−1.

Note that our example satisfies the general assumption ex-
pressed by (3), i.e. pDS = 60 ≤ 100 = p1 ≤ p2 = 150,
and both necessary conditions, i.e. p1

pDS
= 100

60 < 2 and
pn

pDS
= 150

60 = 2 1
2 < 2 50

60 = 2 + UDS. Moreover, because
p2 ∈ [pDS + eDS,kpDS + 2eDS), i.e. 150 ∈ [110,160) for
k = 1, we can increase p2 to p′2 = kpDS +2eDS = 160. With
this new value for p′2, we can use the analysis for case 3. Be-
cause case 3 assumes pDS ≤ p1, the utilization bound for the
ordinary periodic tasks are 0 (zero) for a utilization UDS ≥ 1

2
of task τDS. Hence, our example task set has a utilization
larger than the least upper bound on schedulability.

5. Discussion

In this section, we briefly discuss (i) two errors identified
in [3, 11] (ii) the similarity between the bounds in [7] for

hierarchical FPPS and the bound in [3], and (iii) a novel
utilization bound as presented in [10].

5.1. Derivations of bounds are error-prone

The derivation of the least upper bounds for schedulabil-
ity under the rate monotonic algorithm for task sets with a
so-called Deferrable Server (DS) task τDS is rather complex
and therefore error-prone. We will illustrate this by two ex-
amples.

As a first example, the original bound given in Theo-
rem 3 in [3] contains a typo in the denominator, i.e. a ‘2’ is
lacking in front of UDS in (4), where we used our notation
in Theorem 2.

Theorem 2 (Th. 3 in [3]) For a set of n + 1 fixed priority
ordered tasks τDS, τ1, τ2, . . ., τn with a critical zone length
greater than TDS +CDS, where τDS is the Deferrable Server,
the least upper utilization bound as a function of UDS is

U = UDS +n

[(
UDS +2
UDS +1

)1/n

−1

]
(4)

which converges to

U = UDS + ln
(

UDS +2
2UDS +1

)1/n

as n+1→ ∞ (5)

This function has a minimum of 0.6518 when UDS = 0.186.

This typo originated during the derivation of equation (3)
in that paper. The original bound (4) may therefore be op-
timistic1. Unfortunately, the same typo reappears in Theo-
rem 7.2 in [5]. The derivation of a similar least upper bound
in [2] resulted in an equation without that typo. Note that
(4) specializes to the LL-bound for UDS = 0.

Another example is a least upper bound for the periodic
tasks for case 3 (mentioned in Section 4.2) as described by
equation (56) in [11]. Using our notation, that bound is
given by

DSper,∞(UDS)= ln
(

1+UDS

1+2UDS
(2−UDS)

)
for 0≤UDS ≤ 1

2

(6)
Notably, DSper,∞( 1

2 ) = ln( 9
8 ) > 0. This is wrong, because

for UDS = 1
2 and p1 = pDS the largest value of e1 is given

by (see equation (7) in [11])

e1 = p1−2eDS

= {p1 = pDS} pDS−2eDS

= { eDS
pDS

= 1
2} 2eDS−2eDS

= 0,

and therefore DSper,∞( 1
2 ) = 0. The bound for case 3 is there-

fore optimistic.
1Note that (5) is correct.



5.2. Similarity between bounds in [3, 7]

We now show that the bound in [7] is similar to the bound
in [3]. The following least upper bound is given in [7].

Theorem 3 (Th. 7 in [7]) For a hierarchical reservation
system, the least upper bound of the processor utilization
factor for n child reserves under a parent reserve is

U = n

[(
3−U p

3−2U p

)1/n

−1

]
. (7)

Similar to our approach described in Section 4, we can
model the unavailability of the parent reserve as a de-
ferrable server task τDS. By substituting U p = 1−UDS in
(7), we get

U = n

[(
UDS +2
2UDS +1

)1/n

−1

]
. (8)

Hence, the least upper utilization bound derived in [7] for
the child reserves is similar to the (corrected) utilization
bound for the n tasks described in [3].

5.3. Utilization bound in [10]

In [10], Shin and Lee present a utilization bound
UBΓ,RM(n,Pmin) that differs from their bound given in [8].

Theorem 4 (Th. 5.2 in [10]) For scheduling unit
S(W,R,A), where W = {T (p1,e1), . . . ,T (pn,en)},
R = Γ(Π,Θ), A = RM, and pi ≥ 2Π − Θ, 1 ≤ i ≤ n,
its utilization bound UBΓ,RM(n,Pmin) is

UBΓ,RM(n,Pmin) = UΓ ·n
[(

2 · k +2(1−UΓ)
k +2(1−UΓ)

)1/n

−1

]
,

(9)
where k = KRM(Pmin,R)

For Theorem 4, KRM(Pmin,Γ(Π,Θ)) is defined as

KRM(Pmin,Γ(Π,Θ)) = max
k∈Z

{(k +1)Π−Θ < Pmin} (10)

and Pmin = min1≤i≤n pi. Similar to the bounds in [3, 7], this
bound specializes to the LL-bound for UΓ = 1. Surprisingly,
(9) does not specialize to a bound similar to (7) for k = 1.
The reason why and its consequence are a topic of future
work.

6. Conclusion

In this paper, we revisited utilization bounds for a pe-
riodic resource under the rate monotonic scheduling algo-
rithm. We showed by means of an example that the existing

utilization bound, as presented in [8, 9], is optimistic. We
subsequently showed that by viewing the unavailability of
the periodic resource as a deferrable server at highest prior-
ity, existing utilization bounds for systems with a deferrable
server [3, 11] can be reused. Unfortunately, these earlier
results also contain errors, as illustrated by two examples.
Resolving the error in [11] and understanding why and the
consequence of the fact that the bound in [10] does not spe-
cialize to the bounds in [3, 7] are topics of future work.
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