
Abstract1—Offset-based response time analysis of tasks sched-
uled with fixed priorities has demonstrated to be a powerful tool to
analyze many task models with different kinds of timing con-
straints, like regular periodic tasks, suspending tasks, distributed
systems, tasks with varying priorities, multiframe models, etc. Off-
set-based analysis techniques are capable of performing a global
schedulability analysis in distributed systems, as opposed to the
less efficient techniques that consider each processing or commu-
nication resource as independent. In this paper we extend the off-
set-based schedulability analysis techniques to systems with EDF
scheduling, using analytical techniques that are similar to those de-
veloped for fixed priority scheduling. With this new analysis, we
now have a complete set of techniques to perform the analysis of
different task models in distributed heterogeneous systems, i.e.,
processors and communication networks having either fixed prior-
ity or EDF schedulers.

Index Terms—Distributed Systems, EDF, Real-time Systems,
Schedulability analysis.

I. INTRODUCTION

ATE Monotonic Analysis (RMA) [1][3] allows an exact
calculation of the worst-case response time of tasks in

single-processor real-time systems, including the effects of
task synchronization [10], the presence of aperiodic tasks, the
effects of deadlines before, at or after the periods of the tasks
[2] and tasks with precedence constraints in single processor
systems [4]. For multiprocessor and distributed hard real-time
systems there are fixed-priority schedulability analysis tech-
niques, such as the Holistic analysis [12], which make an inde-
pendent analysis on each processing or communication
resource, and then iterate over this analysis. Because of the
independent resource assumption, these techniques produce
pessimistic results. Offset-based analysis techniques for fixed-
priorities [13][8][9] make a global analysis of the distributed
system and are able to eliminate much of the pessimism,
obtaining response times that are significantly lower, and
increasing the maximum schedulable utilization up to an addi-
tional 25%. Offset-based analysis techniques are also capable

of correctly modeling and analyzing the effects of suspension
in hard real-time tasks.

Spuri [6][7] adapted the Holistic Analysis technique to sys-
tems based on EDF schedulers. In this paper we extend Spuri's
techniques and the offset-based analysis techniques developed
for fixed-priority systems to analyze systems based on
dynamic priorities, under EDF. This extension allows us to
take advantage of the benefits that a global system-wide analy-
sis has on improving the estimations of worst-case response
times over the values obtained through the holistic analysis.
Because offset-based analysis techniques for EDF are very
similar to those for fixed priorities, by combining the two it is
possible to analyze heterogeneous systems in which some
nodes are scheduled under EDF while others are scheduled
under fixed priorities.

The paper is organized as follows. In Section 2 we review
the analysis technique derived by Spuri for periodic tasks
under EDF, as the basis for our technique. Section 3 contains
the analysis for tasks that share resources in mutual exclusion.
Then, in Section 4 we obtain the analysis technique for EDF
tasks with static offsets. In Section 5 we extend the analysis to
handle tasks with dynamic offsets, and we show how to sup-
port different timing constraints under the task model with
dynamic offsets. Section 6 shows the simulation results
obtained with the new technique, comparing them with those
of current techniques, based on independent tasks. Finally, in
Section 7 we give our conclusions.

II. ANALYSIS FOR PERIODIC TASKS

In this section we will consider a task model with periodic
tasks scheduled under the EDF algorithm. In this model, the
system is composed of a set of n periodic tasks executing in a
single processor. Each task τi is activated periodically with a
period of Ti, and has a worst-case execution time of Ci. Each
task activation or instance is called a job, and must execute
before a deadline di, relative to its activation time. Each task
job can have a release jitter bounded by a maximum value Ji,
so the release of the task may be delayed a maximum of Ji from
its activation time. Both Ji and di may be greater than the task's
period, in such a way that several activations of a task can be
pending for execution at a given instant. The task set is sched-
uled under a preemptive EDF scheduler, that is, if some tasks

1. This work has been funded by the Comisión Interministerial de Ciencia y
Tecnología of the Spanish Government under grant TIC 2002-04123-C03 and
by the Commission of the European Communities under contract IST-2001-
34140 (FIRST project)

The authors are with “Departamento de Electrónica y Computadores,
Universidad de Cantabria, 39005-Santander, SPAIN”. E-mail addresses:
{palencij,mgh}@unican.es

R

Response Time Analysis of EDF Distributed
Real-Time Systems

J.C. Palencia and M. González Harbour

are ready to execute, the scheduler will run the task with the
earliest deadline, relative to the current time. For each task τi
we define its worst-case response time as the maximum of the
response times of all the jobs, each of which is defined as the
difference between the job’s completion time and its activation
time. The worst-case response time will be called Ri.

In [6] Spuri developed a method to calculate the worst-case
response times of tasks under this model. We will present here
that analysis technique with some changes in notation that will
facilitate the introduction of offsets in Section 4.

The response time analysis is based on the creation of the
longest busy period. A busy period is defined for EDF schedul-
ing as an interval of time during which the CPU is busy pro-
cessing pending execution of any task. In fixed priority
scheduling, the worst-case response time of a task τa is found
after a critical instant, when the activation of τa coincides with
the activation of all tasks with higher priority after having
experienced the maximum jitter. In that situation, the critical
instant coincides with the start of a busy period. In EDF sched-
uling that property is not true, but the busy period concept is
still useful. The following theorem helps us to find the critical
instant for a task:

Theorem 1. The worst-case response time of a task τa is
found in a busy period in which all other tasks are released
simultaneously at the beginning of the busy period, after hav-
ing experienced their maximum jitter (i.e., each task τi with an
activation Ji time units before the start of the busy period).

Proof: Let t0 be the instant at which a task τi is activated the
first time in the busy period, and let D be the deadline of an
instance of the analyzed task, τa, relative to the beginning of
the busy period. Suppose that t0 does not coincide with the
beginning of the busy period: in this circumstance, if we move
the activation pattern of τi to occur earlier, down to the point
when the first activation coincides with the beginning of the
busy period, it is possible that new activations occur in the
busy period, making it longer. The deadlines of each activation
of τi will be earlier, so an activation with a deadline after
instant D may have been moved to have a deadline before D,
thus increasing the response time of task τa. On the other hand,
if the first activation had experienced its maximum jitter but
continues to be released at the start of the busy period, the fol-
lowing activations will occur the earliest possible and with a
deadline that is earlier, relative to the beginning of the busy
period. Therefore, increasing the jitter of the first activation
can only increase the response time of task τa, and the theorem
follows.

Note that, contrary to the other tasks, releasing the analyzed
task at the start of the busy period may not lead to its worst-
case response time. If we move the activation pattern of τa to
occur earlier, we are causing deadline D to be earlier too, and
this could imply that some deadlines of other tasks that previ-
ously occurred before D could now occur after D, and thus
make the response time of task τa become smaller. So, the crit-
ical instant for a task is found in a busy period that is started by

the simultaneous activation of all tasks except perhaps the one
under analysis.

In order to calculate the worst-case response time of task τa,
we will now calculate, under the conditions of theorem 1, the
worst-case contribution of a task τi to a busy period of length t
when the deadline of τa occurs at instant D. We will name this
contribution Wi(t,D). Figure 1 shows a scenario for calculating
this contribution.

When we calculate the worst-case contribution of a task τi to
a busy period we must consider the activations that occur in the
interval [0,t) but we must only consider the activations with
deadline before or at D. Each of the activations will be identi-
fied with a sequence number p, starting at p=1. In Figure 1,
activation p=4 occurs before t, but its deadline is after D, so
under the EDF rules it must not be considered for the worst-
case contribution.

To calculate the number of activations of τi in the busy
period we can see that the identifier of the last activation in that
busy period, pt, is the only value of p that simultaneously satis-
fies:

and:

from which we get:

Given that pt is an integer number, the solution to the above
two expressions is:

Similarly, the last activation that verifies the deadline condi-
tion, pD, is the only value of p that simultaneously verifies:

and:

from which we get:

Fig. 1. Scenario for calculating the worst-case contribution

p 1–()Ti Ji– t< (1)

pTi Ji– t≥ (2)

p
t Ji+

Ti
------------ 1+< and p

t Ji+

Ti
------------≥ (3)

pt
t Ji+

Ti
------------= (4)

Ji– p 1–()Ti di++ D≤ (5)

Ji– pTi di++ D> (6)

p
Ji D di–+

Ti
------------------------- 1+≤ and p

Ji D di–+

Ti
-------------------------< (7)

so, we get the expression:

Given that the activations that contribute to the worst case
are those with p≤pt and p≤pD, using eqs. (4) and (8) the worst-
case contribution of task τi to the busy period is:

Given that di may be longer than the period, expression (8)
may return a negative value, indicating that all activations have
their deadlines after D and so, that the contribution is 0. With
(x)0 we indicate that if x is negative the result is 0.

Using this expression we can calculate the worst-case
response time of task τa. Unfortunately, we don't know which
instant in the busy period corresponds to the critical instant, but
it is easy to see that it can be found at the beginning of the busy
period, or at an instant such that the deadline of the analyzed
job of τa coincides with the deadline of a task τi’s job. Other-
wise the activation of task τa could be moved to an earlier time
without changing the execution schedule, but making the
response time larger. The set of instants, Ψ, at which the dead-
line of τa’s job coincides with the deadlines of one of the task
jobs in the busy period is:

where L corresponds to longest busy period, calculated as:

The equation above is one of many recurrence equations found
in response time analysis [1] in which the value to be
calculated is in both sides of the equation; of the many
solutions, only the one with the minimum positive value is
valid. These equations can be easily solved iteratively by
starting with a small value of L and using the value obtained
from the equation in the next iteration, until a stable solution is
found. The equation is guaranteed to have a solution if the
utilization of the task set is under 100%. Although the
computation time is pseudopolynomial, it is usually short
except for utilizations very close to 100%.

Each potential critical instant is obtained by subtracting da
from each value in Ψ. Checking all the possible critical instants
we can find the critical instant that causes the worst-case
response time of the task. Given that there may be several acti-
vations of τa in the busy period, we must analyze them all. If
the first activation of τa occurs at time A after the beginning of
the busy period, the completion time of activation p of τa,

wa
A(p), can be calculated by adding the worst-case contribu-

tion of all tasks, which is:

where DA(p) is the deadline of activation p, having the first
activation of τa occurred at A:

We will assume that if tasks synchronize for using shared
resources in a mutually exclusive way they will be using a hard
real-time synchronization protocol such as the stack-based pro-
tocol [14]. Under this assumption, the effects of synchroniza-
tion on a task under analysis τa are bounded by an amount
called the blocking term Ba.

The worst-case response time is calculated by subtracting
the activation time from the obtained completion time:

For each value of p, we only need to check the values of A
within the period, i.e., between 0 and Ta (if A was greater than
the period, then we would be analyzing another activation with
a different value of p). That is, we only need to check the val-
ues of Ψ in the subset:

For each element of Ψ*, named Ψx, the value to check is A
= Ψx - [(p-1)Ta-Ja+da].

To calculate the worst-case response time of task τa we must
determine the maximum response times within all the potential
critical instants examined:

III. MUTUAL EXCLUSION SYNCHRONIZATION

Baker presents in [14] the Stack Resource Protocol (SRP)
for bounding priority inversion in real time systems, indepen-
dently from the scheduling policy used. The method can be
applied to fixed priority or EDF schedulers, for instance. A
number called the preemption level is assigned to each task,
using the priority or importance of each task: the higher the pri-
ority, the higher the preemption level. Shared resources are
also assigned a preemption level that is the highest of the pre-
emption levels of all the tasks that may use that resource. And a
new scheduling rule is imposed: a task can only get active if its
preemption level is strictly higher than the preemption levels of
the resources currently locked in the system. With this proto-
col, in a single processor a task can be delayed by lower prior-
ity tasks only once, during the duration of one critical section.
For the worst case analysis we just pick the longest. Spuri pre-
sents in [6] a technique to optimize the calculation of blocking

pD
Ji D di–+

Ti
------------------------- 1+= (8)

Wi t D,() min
t Ji+

Ti

Ji D di–+

Ti
------------------------- 1+,

 
 
 
 

0

Ci⋅= (9)

Ψ p 1–()Ti Ji di+–{ }∪= p∀ 1… L Ji+

Ti
-------------= (10)

L L Ji+

Ti
------------- Ci⋅

i∀
∑= (11)

wa
A p() Ba pCa Wi wa

A p() DA p(),()
i a≠∀
∑+ += (12)

DA p() A Ja– p 1–()Ta da+ += (13)

RA p() wA p() A– Ja p 1–()Ta–+= (14)

Ψ∗ Ψx Ψ∈ p 1–()Ta Ja da+– Ψx pTa Ja– da+<≤{ }=

(15)

Ra max Ra
A p()()= p∀ 1… L Ja–

Ta
--------------= A Ψ∗∈∀, (16)

times for EDF tasks, based on the fact that not all lower priority
tasks may have deadlines that cause a preemption effect on the
task under analysis. For simplicity, we don’t use those results
here, but they could be easily incorporated to the analysis.

For synchronization among EDF tasks we will use the SRP
with preemption levels inversely proportional to the local
deadline Di of each task [14]. It is also possible to use the dif-
ference between the deadline and the jitter of each task Di-Ji, as
suggested by Spuri [6].

In order to calculate the blocking time for EDF tasks we
know, from the properties of the SRP protocol, that at most one
critical section from each of them can block the task under
analysis. Under that protocol, blocking of any particular task is
only possible if the critical section that may delay it has already
started before the task is activated. If one critical section with
the SRP protocol has started, it is not possible that an EDF task
that may block the task under analysis starts executing, because
according to the SRP rules it does not have enough level to pre-
empt the critical section.

As a consequence of the blocked-at-most-once property the
blocking time for an EDF task τi is obtained as:

where Levi is the preemption level of task τi, CSlm is the l-th
critical section of task τm, and Lev(CSlm) is the preemption
level of the resource associated with that critical section.

IV. ANALYSIS FOR TASKS WITH STATIC OFFSETS

A. Computational Model

Now we will consider the offset-based model, in which the
real-time system is composed of a set of tasks executing in the
same processor and grouped into entities that we call transac-
tions [8]. Each transaction Γi is activated by a periodic
sequence of external events with period Ti, and contains a set
of mi tasks. The relative phasings between the different exter-
nal events are arbitrary. Each task job is activated (released)
when a relative time —called the offset— elapses after the
arrival of the external event (and then adding the release jitter).
In this section of the paper we will assume that the offset is
static, i.e., it does not change from one activation to the next.
We will consider dynamic offsets in Section 5.

Figure 2 shows an example of such a system: the horizontal
axis represents time; down-pointing arrows represent the
arrival of the external events associated to each transaction,
while up-pointing arrows represent the activation times of each
task job; and shaded boxes represent task execution.

Each task will be identified with two subscripts: the first one
identifies the transaction to which it belongs, and the second
one the position that the task occupies within the tasks of its
transaction, when they are ordered by increasing offsets. In this

way, τij will be the j-th task of transaction Γi, with an offset of
φij and a worst-case execution time of Cij. In addition, we will
allow each task to have a maximum release jitter, which we
will call Jij. This means that the activation time of task τij may
occur at any time between t0+φij and t0+φij+Jij, where t0 is the
instant at which the external event arrived. Notice that although
offsets represent a kind of precedence constraints, in our analy-
sis tasks are activated at a time equal to the arrival of the exter-
nal event plus the offset and the release jitter, and they execute
regardless of whether tasks of the same transaction and smaller
offsets have finished or not.

We will allow both the offset φij and the maximum jitter Jij
to be larger than the period of their transaction, Ti. For each
task τij we can define two kinds of response time: the global
response time (also called end-to-end response time), defined
as the difference between its completion time and the instant at
which the associated external event arrived; and the local
response time, measured from the task's offset. We will call Rij
the global worst-case response time and rij the local one. Each
task may have a relative deadline dij, relative to its activation
and may have an associated global deadline, Dij, which is rela-
tive to the arrival of the external event. We will also allow
deadlines to be larger than the periods, and thus at any time
there may be several activations of the same task pending.

Tasks are allowed to share resources in a mutually exclusive
way, using the mechanism described in Section 3. The block-
ing term of task τij is Bij.

B. Response-Time Analysis

In this subsection we will obtain the worst-case response
time of the task under analysis. For building the worst-case
scenario for a task τab under analysis, we must create a critical
instant that leads to the worst-case busy period, with an
approach similar to the one described in Section 2. For tasks
with offsets, we must take into account that the busy period
may not include the simultaneous activation of all tasks, as it
was the case when all tasks were independent. The existence of
offsets makes it impossible for some sets of tasks to simulta-
neously become active. The following theorem allows building
the busy period in which the worst-case response time of τab
can be found:

Bi max CSlm()
l m i≠()∀, Lev CSlm() Levi≥()∀()

= (17)

Fig. 2. Computational model of a system composed of transactions with static
offsets

Theorem 2. The worst-case contribution of transaction Γi to
the response time of a task τab is obtained when the first activa-
tion of some task τik that occurs within the busy period coin-
cides with the beginning of the busy period, after having
experienced the maximum possible delay, i.e., the maximum
jitter, Jik.

Proof: Similar to the proof of theorem 1.

Based on theorem 2, in the analysis of a task τab we must
study all possible busy periods created by choosing one task in
each transaction to coincide with the beginning of the busy
period. Given a task τik coinciding with the start of the busy
period, we will try to find out the contribution of each task τij
in transaction Γi to the worst-case response time. Let us focus
on the activation pattern of task τij, and let us call its phase
relation with the beginning of the busy period, φ. This is the
time interval between the activation of transaction Γi that
occurred immediately before the busy period, and the begin-
ning of busy period. Notice that 0≤φ<Ti because Γi is periodic.
In order to calculate the worst-case contribution of τij to the
response time of task τab we must categorize each instance of
the task into one of the following sets:

•Set 0: Activations that occur before the busy period and that
cannot occur inside the busy period even with the maximum
jitter delay.

•Set 1: Activations that occur before or at the beginning of the
busy period and that can be delayed by an amount of jitter
that causes them to coincide with the beginning of the busy
period.

•Set 2: Activations that occur inside the busy period.

Figure 3 shows two possible scenarios for the alignment of
the transaction Γi's arrival pattern and the busy period. Sce-
nario 1, in the upper part of the figure, corresponds to the case
in which , and the lower part, Scenario 2, corresponds to
φ<φij. Dotted lines represent the actual jitter or delay in the
activation time for each instance of the task. In both scenarios,
time t0 corresponds to the first event of Γi whose task τij may
be delayed by jitter until the beginning of the busy period (acti-
vations before t0 would require a delay larger than the maxi-
mum jitter to occur at the start of the busy period, tB). The
event that occurs at t1 may also be delayed by an amount that

makes it coincide with the busy period. The activation of τij
associated with the event that arrived at t2, can be delayed until
the beginning of the busy period in Scenario 1, but not in Sce-
nario 2, because the offset φij is larger than the relative phase φ
between the event arrivals and the busy period. For scenario 2,
the job associated with the event arriving at t2 must be included
in Set 2.

Once the jobs of task τij have been categorized into the three
sets above, the calculation of the jitter terms that lead to the
worst-case contribution of τij to the response time of task τab
with deadline D is done according to:

Theorem 3. Given a task instance τab with deadline D, and
a phase relation φ between the arrival pattern of transaction Γi
and the beginning of the busy period, the worst-case contribu-
tion of task τij to the response time of τab occurs when the acti-
vations in Set 1 have an amount of jitter such that they all occur
at the beginning of the busy period, and when activations in Set
2 have an amount of jitter equal to zero.

Proof: By the definition of a busy period, activations in Set
0 are not involved in it; otherwise, the busy period would have
started earlier.

For activations in Set 1, we must delay them with a jitter
amount that causes them to occur inside the busy period. But if
this delay causes the activation to occur after the beginning of
the busy period, it might fall outside the busy period; or its
deadline may be delayed to an instant after D, thus making the
response time of τab smaller. Consequently, to ensure the max-
imum possible contribution to the busy period, the jitter
amount must be such that the activation occurs at the start of
the busy period.

For the activations in Set 2, the larger the jitter delay they
have, the more probability that the activation occurs outside the
busy period or with a deadline after D. Thus, to ensure the
worst possible contribution, the jitter amount for these activa-
tions must be zero.

Under the conditions of Theorem 3, we will now calculate
the worst-case contribution of tasks belonging to transaction Γi
to a busy period of length t and deadline D, when the beginning
of the busy period coincides with the activation of one of its
tasks τik. We will call this contribution Wik(t,D). In the same
way as in Section 2, we must consider the activations that
occur in the interval [0,t) but with a deadline before or at D.
First, we will calculate the number of activations of task τij that
belong to Set 1, and thus that may accumulate at the beginning
of the busy period. We will call this number nij (in the exam-
ple, the upper-part scenario had nij=3 and the lower-part sce-
nario had nij=2). To calculate nij, we will define ∆ as the
difference in time between the time at which the last activation
in Set 1 would have occurred if it had no jitter delay, and the
start of the busy period. In the example of Figure 3, ∆ = tb- t2-

Fig. 3. Scenarios for calculating the contribution of task τij to the busy period.

φ φi j≥

φij for Scenario 1, and ∆ = tb- t1- φij for Scenario 2. It can be
seen that:

or, equivalently:

Given that the beginning of the busy period coincides with
the activation of task τik after having experienced the maxi-
mum jitter, phase φ is equal to:

so, by the properties of the mod function:

The first activation of τij in Set 1 corresponds to the event
arriving at t0, which is the first one whose activation may occur
at or after the beginning of the busy period. Therefore, this is
the only activation that simultaneously verifies:

and:

By looking at Figure 3 we can see that:

and replacing it in the two previous expressions we get:

from which we get:

Given that nij is an integer number, the solution to the above
two expressions is:

In order to determine the effects of activations belonging to
Set 2, we need to know the time at which the first of them
occurs; the others will occur at periodic intervals after the ini-
tial one. We will call ϕijk the time difference between the
beginning of the busy period (which coincides with the activa-
tion of τik) and that first activation in Set 2. Given the defini-
tion of ∆ we have:

We could have used ϕijk in the equation above to obtain:

According to Theorem 3, the worst-case contribution of τij
to a busy period of length t is equivalent to nij activations at the
beginning of the busy period, plus a sequence of periodic acti-
vations starting at ϕijk time units after. Without loss of general-
ity, let's set the origin of time at the beginning of the busy
period. Then, the worst-case contribution of task τij to the
response time of τab at time t is determined by:

where ϕijk can be obtained from (21) and (28) as

Now we must consider the deadline condition, that is, only
the activations with deadlines before D can contribute to the
response time. In Figure 4 we can see an example of the activa-
tions of task τij that can contribute to the busy period of length
t. There are nij activations delayed until the beginning of the
busy period and an activation that occurs inside the busy period
with a phase ϕijk. We can see in Figure 4 that the number of
activations in the busy period which have their deadline at or
before D is the same as if we consider a periodic task without
jitter in a busy period that start at instant t0 and with a deadline
of D'. Given that the interval between t0 and the first activation
in the real busy period is nijTi, we get:

and so, the number of activations from instant t0 that have their
deadline at or before D is:

∆
φ φi j– if φ φi j≥

Ti φ φij–+ if φ φij<



= (18)

∆ φ φi j–() mod Ti= (19)

φ φik Jik+() mod Ti= (20)

∆ φik Jik φi j–+() mod Ti= (21)

t0 φij Jij+ + tB≥ (22)

t0 Ti– φi j Jij+ + tB< (23)

tB t0 nij 1–()Ti φi j ∆+ + += (24)

t0 φi j Jij+ + t0 nij 1–()Ti φi j ∆+ + +≥

t0 Ti– φi j Jij+ + t0 nij 1–()Ti φij ∆+ + +<
(25) (25)

nij 1–
Jij ∆–

Ti
---------------≤ and nij 1–

Jij ∆–

Ti
--------------- 1–> (26)

nij
Jij ∆–

Ti
--------------- 1+= (27)

ϕi jk Ti ∆–= (28)

nij
Jij ϕi jk+

Ti
--------------------= (29)

nijCij
t ϕijk–

Ti
---------------- Cij+ =

Jij ϕi jk+

Ti

t ϕijk–

Ti
----------------+

 
 
 

Cij

(30)

ϕi jk Ti φik Jik φi j–+()– mod Ti= (31)

Fig. 4. Activations in busy period with deadline D

D' D Jij ϕi jk+

Ti
-------------------- Ti ϕi jk–+= (32)

D' dij–

Ti
----------------- 1+ Jij ϕi jk+

Ti

D ϕi jk– dij–

Ti
------------------------------ 1+ += (33)

Given that the activations that contribute to the worst case
must be at or before the values specified by both conditions
(30) and (33), and deriving from (9), the worst-case contribu-
tion of task τij to a busy period of length t and deadline D when
the beginning of the busy period coincides with the activation
of τik is:

Finally, the total contribution of transaction Γi is calculated
by adding the contributions of all tasks:

To calculate the worst-case response time of task τij we
must check all possible busy periods built choosing one task in
each transaction. Obviously, the large number of combinations
make the analysis intractable and cannot be used. To solve this
problem, the following section shows an approximation that
gives extremely good results.

C. Upper-Bound Approximation for Worst-Case Analysis

As in the analysis techniques for offsets in fixed priority
scheduling [8], we will use the approximate method described
in [13] that will let us obtain upper bounds for the global worst-
case response times in a system composed of transactions with
fixed offsets. Although the technique is not exact, the number
of cases that need to be checked has a polynomial dependency
on the number of tasks, which makes the method applicable
even for relatively large systems. If the response times
obtained with this method are smaller than the respective dead-
lines, the method gives guarantees that all timing requirements
will be met.

The main problem with the technique developed in section
4.2 is that we don't know which task τik must be used to create
the worst-case busy period. This caused us to have to check all
possible combinations. We can avoid this problem by obtain-
ing an upper bound to the interference of the tasks of a transac-
tion Γi in a busy period of duration t and deadline D, as the
maximum of all possible interferences that could have been
caused by considering each of the tasks of Γi as the one origi-
nating the busy period:

Therefore, using this function in the calculation of the
response times, we can make sure that the time obtained is an
upper bound for the contribution of the tasks of transaction Γi
and thus it is not necessary to calculate all the possible combi-
nations for k. By using one function like this for each transac-
tion, we can calculate the global worst-case response time for a
particular task by checking only a single case.

In order to introduce less pessimism, we will not use that
maximum function for the transaction to which the task under
analysis belongs, but we will use the original transaction
instead. Consequently, we must repeat the analysis considering
each task of transaction Γa to be the first to be activated in the
busy period, and then use the worst of these results. The num-
ber of possibilities is small, equal to the number of tasks in the
transaction.

Again, we don't know which instant in the busy period cor-
responds to the critical instant for the analysis of τab, but as we
mentioned in Section 2, the critical instant can be found at the
beginning of the busy period or at an instant such that the dead-
line of τab coincides with the deadline of another task of
another transaction. For convenience, we will number the jobs
of tasks using the letter p, with consecutive numbers ordered
according to the activation time that they would have had if
they had no jitter. In addition, we will assign the value p=1 to
the activation of τij that occurs in the interval (0,Ti]. This
means that the activation that occurred in the interval (Ti,2Ti]
gets the value p=2, etc. Similarly, the activation that would
have occurred in the interval (-Ti,0] but that was delayed to the
beginning of the busy period corresponds to p=0, the one in (-
2Ti,-Ti] to p=-1, etc. Notice that activations that occur after the
beginning of the busy period are numbered with positive num-
bers, while previous activations have values of p≤0.

In this schema, the deadline of activation p of task τij is
equal to ϕijk + (p-1)Ti + dij. Accordingly, the first activation of
a task τij in the busy period built with τik corresponds to index:

and the last one to:

where L is the length of the busy period (or an upper bound, as
obtained in (11)). So, the set of values to check in the analysis,
Ψ, can be obtained from:

Given that there may be several activations of τab in the
busy period, we must analyze them all. In the busy period cre-
ated with τac the activations to analyze are those from p =
p0,abc to p = pL,abc. If the first activation of τab occurs at a time
instant A after the beginning of busy period, the completion

Wijk t D,()

Jij ϕi jk+

Ti
-------------------- min

t ϕi jk–

Ti

D ϕi jk– dij–

Ti
------------------------------ 1+,

 
 
 

+

 
 
 
 

0

Cij

= (34)

Wik t D,() Wijk t D,()∑ j Γi∈∀,= (35)

Wi∗ t D,() max Wik t D,()() k Γi∈∀,= (36)

p0 i jk,
Jij ϕijk+

Ti
-------------------- 1+–= (37)

pL ijk,
L ϕi jk–

Ti
------------------= (38)

Ψ ϕi jk p 1–()Ti dij+ +{ }∪=

p∀ p0 ijk, … L ϕi jk–

Ti
------------------= j k, Γi∈∀,

(39)

time of activation p, , can be calculated by adding the
worst-case contribution of all transactions:

where is the result of (35) for transaction Γa without
considering contribution of τab, and is the deadline of
activation p when the first one occurs at instant A:

The global worst-case response time is obtained by subtract-
ing from the obtained completion time the arrival instant of the
external event:

For each p we only need to check the values of A between 0
and Ta (if A was greater, then we would be analyzing an activa-
tion with another value of p) in such a way that its deadline
coincides with the deadline of another task. That is, we only
need to check the values of Ψ in the subset:

For each element of Ψ*, named Ψx, the value to check is A
= Ψx - [ϕijk+(p-1)Ta+dab].

The busy period can be calculated by considering the contri-
butions without the deadline limitation, i.e.,

To calculate the global worst-case response time of task τab
we must determine the maximum amount among all the poten-
tial critical instants examined:

Note that we can calculate local response times in the same
way, but without considering the phase of the task, φab in equa-
tion (42). The system will be schedulable if all worst-case
response times (local and global) are lower than the respective
deadlines (local and global).

V. ANALYSIS FOR TASKS WITH DYNAMIC OFFSETS

In this section we will extend the analysis to include the case
in which the system has tasks with dynamic offsets. As in the
case with static offsets, the system is composed of a set of
transactions that execute in the same processor. Each transac-

tion Γi has a period of Ti and contains a set of mi tasks with
activation offset Φij, worst-case execution time Cij, and maxi-
mum jitter Jij. However, in this case task offsets are allowed to
vary dynamically, from one activation to the next, within a
minimum and a maximum value: . In
[8] we solved this problem by using the analysis technique for
static offsets with an offset equal to Φij,min and a release jitter
of Jij+Φij,max-Φij,min.

In [8] we saw that the analysis for tasks with dynamic off-
sets is useful in systems in which tasks suspend themselves and
also in distributed and multiprocessor systems. We can model
tasks in such systems scheduled under EDF exactly in the same
way as we did for fixed priorities. In this kind of system the
task offsets and jitter terms depend on the response times of
previous tasks in the transaction, which themselves depend on
the offsets and jitter terms. For example, in a distributed sys-
tem with end-to-end deadlines an external event causes a
response composed of a sequence of tasks, in which each task
activates the next one through the transmission of a message
when it finishes. This system can be modeled with tasks having
offsets and jitters: each task would have an offset term equal to
the earliest possible activation time in the sequence (i.e., the
best-case response time of the preceding task) and a jitter term
equal to the difference between the worst- and best-case
response times of the preceding task.

Using an iterative algorithm, similar to the one used for the
holistic analysis, and using adequate initial values for offsets
and jitter terms [8] we can calculate the response times. From
these we can obtain new jitter terms that we can use to estimate
new response times. This algorithm converges to stable values
with which we can obtain tight upper bounds for the worst-case
response times.

VI. COMPARISON WITH EXISTING TECHNIQUES

We have compared the results of the analysis for tasks with
dynamic offsets using the upper-bound approximation pre-
sented in Section 4.3 with the results obtained using the current
analysis technique for distributed systems by Spuri, which
models the system as a set of independent tasks with their
release jitter inherited from the previous tasks in the transac-
tion [7]. For this purpose, we have conducted extensive simula-
tions with different task sets whose execution times and
periods were generated randomly. Deadlines were assigned
based on periods. Local deadlines are assigned by dividing the
end-to-end deadline among all the tasks. The results of some of
these simulations are shown in this section.

The first set of graphs (Figure 5 to Figure 7) compares the
response times obtained using Spuri’s technique for indepen-
dent tasks, Rindep, with the response times obtained using our
offset-based algorithm, ROffsets. In these figures, we show the
average ratio Rindep/ROffsets obtained for five simulated tasks
sets for each point in the graph. The X axis represents proces-
sor utilization. Each figure presents the results for three differ-
ent ratios of the maximum transaction period over the

wabc
A p()

wabc
A p() Bab p p0 abc,– 1+()Cab+=

+Wac
 - wabc

A p() Dabc
A p(),() Wi wabc

A p() Dabc
A p(),()

i a≠∀
∑+

(40)

Wac
 -

Dabc
A p()

Dabc
A p() A ϕabc p 1–()Ta dab+ + += (41)

Rabc
A p() wabc

A p() A– ϕabc– p 1–()Ta– φab+= (42)

Ψ∗ Ψx Ψ∈
ϕabc p 1–()Ta dab+ Ψx ϕabc pTa dab+ +<≤+

{
}

= (43)

Labc Wac Labc ∞,() Wi∗ Labc ∞,()
i a≠∀
∑+= (44)

Rab max Rabc
A p()()=

p∀ p0 ijk, … L ϕi jk–

Ti
------------------ c Γa∈∀ A Ψ∗∈∀, ,=

(45)

Φij Φi j min, Φij max,,[]∈

minimum transaction period, Tmax/Tmin. Figure 5 shows the
results for a set of 10 transactions with 5 tasks per transaction,
in one processor, for the case in which the best-case response
times are considered negligible, and thus the task offsets are all
zero. It can be seen that for normal utilization levels of around
60%, the response times with independent tasks are roughly
between 2.7 and 3.5 times larger than in the analysis with
dynamic offsets.

Figure 6 shows the results for a similar case, but running on
four processors. We can see that as the number of tasks of the
same transaction that are in the same processor diminishes, the
benefits of the offset-based algorithm also diminish. However,
these benefits are still significant, with response times between
2.2 and 3.4 times better for 60% utilization. Figure 7 shows the
results for the same case as Figure 6, except that the best-case
response time of each task is considered equal to the sum of the
execution times of itself and all its predecessor tasks in the
same transaction. We can see that, in this case, the results are
significantly better, with response times between 3.5 and 4.75
times better than in the analysis with independent tasks, for a
utilization of 60%.

The second set of graphs (Figure 8 and Figure 9) compare
the maximum schedulable utilization that can be obtained for a
given task set using the analysis for independent tasks, the off-
set-based algorithm with zero best-case response times, and the

offset-based algorithm with best-case response times equal to
the task execution times. The maximum schedulable utilization
is obtained by analyzing a system with low utilization and then
increasing its utilization until the system no longer meets its
deadlines. The maximum schedulable utilization is taken for
the last of the task sets for which the deadlines were met. The
simulations have been done for different ratios of deadlines
over periods, Di/Ti. Figure 8 shows the results for the simula-
tion of a system with 4 processors, 5 transactions and 20 tasks
per transaction, with Tmax/Tmin=10. Figure 9 shows the results

Analysis for:
 1 processor
 10 transactions
 5 tasks per transaction

1

1,5

2

2,5

3

3,5

4

4,5

5

0 10 20 30 40 50 60 70 80 90

% Utilization

R
in

d
ep

/R
O

ff
se

ts

Tmax/Tmin = 10
Tmax/Tmin = 100
Tmax/Tmin=1000

Fig. 5. Rindep/Roffsets, 1 processor, best=0

Analysis for:
 4 processor
 10 transactions
 12 tasks per transaction
 best case = 0

1

2

3

4

0 10 20 30 40 50 60

% Utilization

R
in

d
ep

/R
O

ff
se

ts

Tmax/Tmin = 10
Tmax/Tmin = 100
Tmax/Tmin = 1000

Fig. 6. Rindep/Roffsets, 4 processors, best=0

Analysis for:
 4 processor
 10 transactions
 12 tasks per transaction
 best case > 0

1

2

3

4

5

0 10 20 30 40 50 60

% Utilization

R
in

d
ep

/R
O

ff
se

ts

Tmax/Tmin = 10
Tmax/Tmin = 100
Tmax/Tmin = 1000

Fig. 7. Rindep/Roffsets, 4 processors, best>0

Analysis for:
 4 processors
 5 transactions
 20 tasks per transaction
 Tmax/Tmin=10

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70

Maximum schedulable utilization

D
/T

Independent tasks
Offsets with best case=0
Offsets with best case > 0

Fig. 8. Maximum scheduling utilization, 100 tasks

Analysis for:
 4 processors
 5 transactions
 12 tasks per transaction
 Tmax/Tmin=100

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

Maximum schedulable utilization

D
/T

Independent tasks

Offsets with best case=0

Offsets with best case >
0

Fig. 9. Maximum scheduling utilization, 60 tasks

for a similar task system, but with 12 tasks per transaction
instead of 20 and with Tmax/Tmin=100. We can see that from
values of Di/Ti=2 and higher, we can get an increase of around
25% more schedulable utilization in the case of 12 tasks, and
16% more in the case of 20 tasks. It is also worth mentioning
that for systems with several processors the results are better if
we consider best-case response times larger than zero, although
it is still possible to get benefits from our new analysis if we
consider the best execution times (and thus the offsets) equal to
zero.

The execution time of the offset-based analysis techniques
for EDF scheduling is significantly higher than for fixed-prior-
ity scheduling, because the number of cases to analyze is
higher, due to the fact that all the potential critical instants in
the busy period need to be checked. In fixed priority systems
there is only one critical instant per busy period. In EDF, the
amount of cases to check is polynomial, equal to the number of
deadlines in Ψ, which is Σ , where mi is the number of tasks
in transaction Γi. However, since this is an off-line analysis
technique it is usually not a problem to spend more time in it.

VII. CONCLUSIONS

In this paper we have presented a modification of the analy-
sis of fixed-priority tasks with offsets, to support EDF schedul-
ing. This modification allows analyzing distributed or
multiprocessor systems with significantly better results than
using the previous holistic analysis for EDF. In many simula-
tion experiments we obtained response times that were
between 250% and 500% better than with the holistic analysis.
The modification is also useful for analyzing other effects,
such as task suspension.

With the technique obtained we have a complete set of tools
for analyzing real-time systems with nodes that are scheduled
either under EDF or fixed priorities, using the same family of
offset-based analysis methods.

References
[1] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour, A

Practitioner's Handbook for Real-Time Systems Analysis. Kluwer
Academic Pub., 1993.

[2] J.P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines". IEEE Real-Time Systems Symposium, 1990.

[3] C.L. Liu, and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”. Journal of the
ACM, 20 (1), 1973, pp 46-61.

[4] M. González Harbour, M.H. Klein, and J.P. Lehoczky. “Fixed Priority
Scheduling of Periodic Tasks with Varying Execution Priority”.
Proceedings of the IEEE Real-Time Systems Symposium, December 1991,
pp. 116-128.

[5] S. Baruah, D. Chen, S. Gorinsky S and A. Mok." Generalized multiframe
tasks". Real-Time Systems 17 (1), pp. 5-22.

[6] M. Spuri. "Analysis of Deadline Scheduled Real-Time Systems". RR-
2772, INRIA, France, 1996.

[7] M. Spuri. "Holistic Analysis of Deadline Scheduled Real-Time
Distributed Systems". RR-2873, INRIA, France, 1996.

[8] J.C. Palencia and M. González Harbour “Schedulability Analysis for
Tasks with Static and Dynamic Offsets". Proceedings of the 19th IEEE
Real-Time Systems Symposium, 1998.

[9] J.C. Palencia Gutiérrez, J. J. Gutiérrez García, and M. González Harbour,
“Best-Case Analysis for Improving the Worst-Case Schedulability Test
for Distributed Hard Real-Time Systems”. 10th Euromicro Workshop on
Real-Time Systems, Berlin, Germany, June 1998.

[10]L. Sha, R. Rajkumar, and J.P. Lehoczky. “Priority Inheritance Protocols:
An approach to Real-Time Synchronization”. IEEE Trans. on Computers,
Sept. 1990.

[11]J. Sun and J. Liu, “Bounding the end-to-End Response Time in
Multiprocessor Real-Time Systems”, Proceedings of the Third Workshop
on Parallel and Distributed Real-Time Systems, Santa Barbara, CA, 1995.

[12]K. Tindell, and J. Clark, “Holistic Schedulability Analysis for Distributed
Hard Real-Time Systems”. Microprocessing & Microprogramming, Vol.
50, Nos.2-3, pp. 117-134, April 1994.

[13]K. Tindell, “Adding Time-Offsets to Schedulability Analysis”, Technical
Report YCS 221, Dept. of Computer Science, University of York,
England, January 1994.

[14]T.P. Baker, “Stack-Based Scheduling of Realtime Processes”, Journal of
Real-Time Systems, Vol. 3, Issue 1, March 1991.

mi
2

