
Schedulability Analysis for Real-Time Systems
with EDF Scheduling

Fengxiang Zhang, Student Member, IEEE, and Alan Burns, Senior Member, IEEE

Abstract—Real-time scheduling is the theoretical basis of real-time systems engineering. Earliest Deadline First (EDF) is an optimal

scheduling algorithm for uniprocessor real-time systems. Existing results on an exact schedulability test for EDF task systems with

arbitrary relative deadlines need to calculate the processor demand of the task set at every absolute deadline to check if there is an

overflow in a specified time interval. The resulting large number of calculations severely restricts the use of EDF in practice. In this

paper, we propose new results on necessary and sufficient schedulability analysis for EDF scheduling; the new results reduce,

exponentially, the calculation times, in all situations, for schedulable task sets, and in most situations, for unschedulable task sets. For

example, a 16-task system that in the previous analysis had to check 858,331 points (deadlines) can, with the new analysis, be

checked at just 12 points. There are no restrictions on the new results: each task can be periodic or sporadic, with relative deadline,

which can be less than, equal to, or greater than its period, and task parameters can range over many orders of magnitude.

Index Terms—Multiprocessing/multiprogramming/multitasking, scheduling, real-time and embedded systems.

Ç

1 INTRODUCTION

REAL-TIME systems are playing a crucial role in our
society, and in the last two decades, there has been an

explosive growth in the number of real-time systems being
used in our daily lives and in industry production. Systems
such as chemical and nuclear plant control, space missions,
flight control systems, military systems, telecommunica-
tions, multimedia systems, and so on all make use of real-
time technologies. The most important attribute of real-time
systems is that the correctness of such systems depends on
not only the computed results but also on the time at which
results are produced. In other words, real-time systems
have timing requirements that must be guaranteed.
Scheduling and schedulability analysis enables these
guarantees to be provided.

In scheduling theory, a real-time system comprises a set
of real-time tasks; each task consists of an infinite or finite
stream of jobs. The task set can be scheduled by a number
of policies including fixed priority or dynamic priority
algorithms. The success of a real-time system depends on
whether all the jobs of all the tasks can be guaranteed to
complete their executions before their deadlines. If they
can, then we say the task set is schedulable.

Schedulability tests can be sufficient or exact (necessary
and sufficient). Sufficient tests are usually efficient but they
are not powerful; many schedulable task sets are not judged
to be schedulable. The simplest sufficient tests for real-time
systems are utilization-based and they have polynomial
complexity. However, we observed that nearly all task sets,
which are randomly generated in our experiments, cannot
be correctly evaluated by such tests [20].

The exact schedulability analysis for fixed priority (FP)
scheduling is accomplished by response time tests [2], [13]
which calculate the worst-case response time for each task
to judge whether a system is schedulable. However, even
with an exact test, FP scheduling is never as effective as the
dynamic schemes.

The most common dynamic priority scheduling algo-
rithm for real-time systems is the Earliest Deadline First
(EDF) which was introduced by Liu and Layland [15] in 1973.
According to the EDF algorithm, an arrived job with the
earliest absolute deadline is executed first. The EDF algo-
rithm has been proven by Dertouzos [9] to be optimal among
all scheduling algorithms on a uniprocessor, in the sense that
if a real-time task set cannot be scheduled by EDF, then this
task set cannot be scheduled by any algorithm.

Liu and Layland [15] presented a necessary and sufficient
schedulability condition for EDF systems under the assump-
tion that all task’s relative deadlines are equal to their
periods. The schedulability condition is that the total
utilization of the task set must be less than or equal to 1.
However, in practical real-time systems, a task’s relative
deadline is not always equal to its period, so the above
assumption severely restricts the usefulness of exact utiliza-
tion-based tests.

The existing results on exact schedulability analysis for
EDF scheduling with arbitrary relative deadlines need to
calculate the processor demand of the task set at every
absolute deadline to check if there is an overflow in a
specified time interval. This interval is bounded by a certain
value which guarantees we can find a failure point if the
task set is not schedulable. In such an interval, there could
be a very large number of absolute deadlines that need to be
verified. The significant effort required to perform the exact
schedulability test restricts the use of EDF in realistic
systems; hence, the EDF algorithm has not been used as
widely as the fixed priority algorithms in commercial real-
time systems.
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The motivation for providing faster exact schedulability
analysis for general EDF systems is twofold. As part of the
design process, many different parameter profiles may need
to be checked. An automated search may even be under-
taken as part of the architectural definition of the system.
An efficient but accurate schedulability scheme is therefore
needed. The second requirement comes from online
systems. During the runtime of a system, new tasks may
arrive that need to be added to the task set. The system
must recalculate schedulability online to decide whether to
allow the new tasks to enter into the system. Such online
admission control gives a much higher requirement for the
performance of the schedulability test as the decisions have
to be made in a very short time and should not occupy too
much system resource.

In this paper, we propose new results on necessary and
sufficient schedulability analysis for general EDF systems.
We refer to the new approach as the Quick convergence
Processor-demand Analysis (QPA) algorithm. QPA builds
on the traditional processor demand analysis. By intensive
experiments, we show that QPA reduces the calculation
effort exponentially in most situations.

The rest of the paper is organized as follows: Section 2
describes the system model and notations used in this paper.
Section 3 describes the existing results on exact schedul-
ability tests based on the processor demand analysis for EDF
scheduling with arbitrary relative deadlines. In Section 4, we
propose the QPA algorithm which provides fast schedul-
ability tests for arbitrary relative deadline EDF systems.
In Section 5, we present a tighter upper bound for the
processor demand analysis. Section 6 includes experimental
results based on a large number of randomly generated task
sets. Conclusions are given in Section 7.

2 SYSTEM MODEL

A hard real-time system comprises a set of n independent
real-time tasks f�1; �2; . . . ; �ng, each task consists of an infinite
or finite stream of jobs or requests which must be completed
before their deadlines. Let �i indicate any given task of the
system. Each task can be periodic or sporadic.

Periodic tasks. All jobs of a periodic task �i have a
regular interarrival time Ti, we call Ti the period of the
periodic task �i. If a job for a periodic task �i arrives at
time t, then the next job of task �i must arrive at tþ Ti.

Sporadic tasks. The jobs of a sporadic task �i arrive
irregularly, but they have a minimum interarrival time Ti,
we call Ti the period of the sporadic task �i. If a job of a
sporadic task �i arrives at t, then the next job of task �i can
arrive at any time at or after tþ Ti.

It is assumed that the first job of each task arrives at the
same time for periodic tasks. Each job of task �i requires up to
the same worst-case execution time which equals the task �i’s
worst-case execution time Ci, where Ci > 0, and each job of
task �i has the same relative deadline which equals the task
�i’s relative deadlineDi. If a job of task �i arrives at time t, the
required worst-case execution time Ci must be completed in
Di time units, and the absolute deadline of this job is tþDi.

At any time, preemption is allowed. According to the
EDF algorithm, an arrived job with an earlier absolute
deadline can preempt the execution of a job with a later
absolute deadline. When a job completes its execution, the

system chooses the pending job with the earliest absolute
deadline to execute.

The following notation is used throughout the paper:
Ci—the worst-case execution time of task �i;
Di—the relative deadline of task �i;
Ti—the period of task �i;
n—the number of tasks in the system or the task set;
di—absolute deadline of a job for task �i;
Ui—the utilization of task �i, and Ui ¼ Ci=Ti;
U—the total utilization of the task set, computed by

U ¼
Pn

i¼1 Ci=Ti.

3 PREVIOUS RESULTS ON EXACT

SCHEDULABILITY ANALYSIS

In 1973, Liu and Layland proved that a periodic task set is
schedulable if and only if U � 1 under the assumption that
each Di ¼ Ti. Liu [16] reported that the density of a task set
given by � ¼

Pn
i¼1 Ci=minfDi; Tig � 1 is a sufficient sche-

dulability condition for general EDF systems. There are also
a number of papers [1], [8], [10] that provide efficient analysis
for EDF scheduling, without restriction on relative deadlines,
but these tests are only sufficient or are approximations. In
the remainder of this section, we concentrate on the exact
schedulability analysis for EDF systems with arbitrary
relative deadlines.

In 1980, Leung and Merrill [14] noted that a set of periodic
tasks is schedulable if and only if all absolute deadlines in the
interval ½0;maxfsig þ 2H� are met, where si is the start time of
task �i;minfsig ¼ 0, and H is the least common multiple of
the task periods. In 1990, Baruah et al. [3], [4] extended this
condition for sporadic task systems, and they showed that
the task set is schedulable if and only if 8t > 0; hðtÞ � t, where
hðtÞ is the processor demand function which calculates the
maximum execution time requirement of all tasks’ jobs
which have both their arrival times and their deadlines in a
contiguous interval of length t, and hðtÞ is given by

hðtÞ ¼
Xn
i¼1

max 0; 1þ t�Di

Ti

� �� �
Ci: ð1Þ

Baruah et al. [3], [4], [5] showed that using the above
necessary and sufficient schedulability test, the value of t
can be bound by an easily computed value.

Theorem 1 ([3], [4], [5]). A general task set (Ti and Di are not

related) is schedulable if and only if U � 1 and

8t < La; hðtÞ � t;

where La is defined as follows:

La ¼ max D1; . . . ; Dn; max
1�i�n

fTi �Dig
U

1� U

� �
: ð2Þ

In 1996, under the assumption that each Di � Ti,
Ripoll et al. [18] gave a different upper bound for the
schedulability test, their upper bound is

L2
a ¼

Pn
i¼1ðTi �DiÞUi

1� U : ð3Þ

Note,

Pn

i¼1
ðTi�DiÞUi
1�U � max1�i�nfTi �Dig U

1�U .
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However, for an arbitrary deadline system in which Di

could be larger than Ti, the maximum relative deadline
max1�i�nfDig has to be taken into account. Therefore, the
necessary and sufficient condition for schedulability be-
comes the following.

Theorem 2 ([7], [11], [12]). A general task set is schedulable if
and only if U � 1 and

8t < La; hðtÞ � t;

where La is defined as follows:

La ¼ max D1; . . . ; Dn;

Pn
i¼1ðTi �DiÞUi

1� U

� �
: ð4Þ

In 1996, Spuri [19] and Ripoll et al. [18] derived another
upper bound for the time interval which guarantees that we
can find an overflow if the task set is not schedulable. This
interval is called the synchronous busy period (the length of
the first processor busy period of the synchronous arrival
pattern described in Definition 1). However, Ripoll et al. [18]
only considered the situation of each Di � Ti.
Definition 1 ([18], [19]). A synchronous busy period is a

processor busy period in which all tasks are released
simultaneously at the beginning of the processor busy period,
and then, at their maximum rate, and ended by the first
processor idle period (the length of such a period can be zero).

The length of the synchronous busy period Lb can be
computed by the following process [18], [19]:

w0 ¼
Xn
i¼1

Ci; ð5Þ

wmþ1 ¼
Xn
i¼1

wm

Ti

� �
Ci; ð6Þ

where the recurrence stops when wmþ1 ¼ wm, and then
Lb ¼ wmþ1.

Lemma 1 ([19]). The length of the synchronous busy period is
the maximum length of any possible busy processor period in
any schedule.

Lemma 2 ([15]). When the EDF algorithm is used to schedule a
set of tasks on a processor, there is no processor idle time prior
to an overflow (deadline miss).

Theorem 3 ([19]). A general task set is schedulable if and only if
U � 1 and

8t � Lb; hðtÞ � t;

where Lb is the length of the synchronous busy period of the
task set.

Lemma 3. hðLbÞ � Lb.
Proof. Let all tasks be released simultaneously at t ¼ 0, and

then, at their maximum rate, according to Definition 1,
the processor is always busy during [0; Lb). Suppose
hðLbÞ > Lb, then the processor continues to be busy at
and after t ¼ Lb, so the busy period must be longer than
Lb. This contradicts Lemma 1, hence hðLbÞ � Lb. tu
Since there is no direct relationship between La and Lb,

the time interval that needs to be checked can be bound to the

value minðLa; LbÞ. As the processor demand hðtÞ could only

change at the times of absolute deadlines, the schedulability

test becomes the following.

Theorem 4 ([5], [7], [11], [12], [19]). A task set is schedulable if

and only if U � 1 and

8t 2 P; hðtÞ � t;

where P ¼ fdkjdk ¼ kTi þDi ^ dk < minðLa; LbÞ; k 2 Ng,
where La is calculated by (4) and Lb is the solution of (5)

and (6).

In Section 5, we will present a minor improvement to the

calculation of La.

4 NEW ALGORITHM FOR

SCHEDULABILITY ANALYSIS

The existing results on exact schedulability tests for EDF
scheduling need to check all the absolute deadlines in the
time interval ð0;minfLa; LbgÞ. In a given interval, there can
be a very large number of absolute deadlines that need to
be checked.

In this section, we propose the QPA algorithm which not

only provides fast and simple schedulability tests for EDF, but

also is necessary and sufficient. By the proposed algorithm,

we do not check every deadline, and we do not need to

compute all the values of deadlines in the interval even when

the task set is schedulable.
We define L to be the minimum value of La and Lb.

Considering that the upper bound La is not well defined
(divide by 0) when the utilization of the task U is equal to 1,
let L be defined as

L ¼ minðLa; LbÞ U < 1
Lb U ¼ 1

�
: ð7Þ

Let di be any absolute deadline of a job from task

�i; di ¼ kTi þDi; k 2 N . Denote dmin ¼ minfDig. When a

system is unschedulable, define

d� ¼ maxfdij0 < di < L ^ hðdiÞ > dig:

QPA works by starting with a value of t close to L, and

then, iterating back through a simple expression toward 0.

The value of this t sequence converges for an unschedulable

system to d�, and converges for a schedulable system to 0

(although it is stopped once hðtÞ � dmin, see Fig. 1).
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Lemma 4. For an unschedulable system, let dm ¼ maxfdijdi <
Lg. If hðdmÞ � dm, then d� < hðd�Þ < d0, where d0 ¼
minfdijdi > d�g.

Proof. Since dm ¼ maxfdijdi < Lg and hðdmÞ � dm, we have

d� < dm, then d0 � dm < L. Suppose hðd�Þ � d0, as hðtÞ is

a nondecreasing function of t, we have hðd0Þ > hðd�Þ � d0.
This contradicts the condition that d� is the largest di
satisfying 0 < di < L ^ hðdiÞ > di, so d� < hðd�Þ < d0. tu

Lemma 5. For an unschedulable system, let dm¼ maxfdijdi <
Lg. If hðdmÞ � dm, then we have 8t 2 ½hðd�Þ; dmÞ; hðd�Þ �
hðtÞ � t.

Proof. From Lemma 4, d� < hðd�Þ < d0, so when t 2 ½hðd�Þ;
d0Þ; hðtÞ ¼ hðd�Þ � t. When t 2 ½d0; dmÞ, suppose 9t� <
hðt�Þ, let d� ¼ maxfdijdi � t�g, then hðd�Þ ¼ hðt�Þ >
t� � d�, since d� > t�. This contradicts the definition of

d�, so there is no such t� in ½d0; dmÞ. Therefore, 8t 2
½hðd�Þ; dmÞ; hðd�Þ � hðtÞ � t. tu

Theorem 5. A general task set is schedulable if and only if U � 1

and the result of the following iterative algorithm is

hðtÞ � dmin.

t maxfdijdi < Lg;
whilewhile ðhðtÞ � t ^ hðtÞ > dminÞ
fifif ðhðtÞ < tÞ t hðtÞ;
else t maxfdijdi < tg;
g
ifif ðhðtÞ � dminÞ the task set is schedulable;

elseelse the task set is not schedulable;

Proof. Suppose the task set is not schedulable. Again, let

dm ¼ maxfdijdi < Lg.
If hðdmÞ > dm, the iteration stops as hðtÞ > t.
If hðdmÞ � dm, we have dm > d�, then there are three

cases before the iterative process stops.

Case 1: hðtÞ < t. At the beginning of the iteration,

t ¼ dm > d�. Since hðtÞ is a nondecreasing function with

t; hðtÞ � hðd�Þ, then we have hðd�Þ � hðtÞ < t < dm,

from Lemma 5, hðdmÞ � dm ^ t 2 ½hðd�Þ; dm� ) hðd�Þ �
hðtÞ � t, so after t hðtÞ, we still have hðd�Þ � hðtÞ <
t < dm. Therefore, t is always larger than or equal to

hðd�Þ in this case.

Case 2: hðtÞ ¼ t. At this time, t is still larger than d�, and

if we let t maxfdijdi < tg, obviously t ¼ di � d�. If
t ¼ di ¼ d�, then hðtÞ > t, and the iterative process stops.

If t ¼ di > d�, from Lemma 4, d� < hðd�Þ < d0, where

d0 ¼ minfdijdi > d�g; therefore, we have hðd�Þ < d0 �
t < dm, and from Lemma 5, the process enters Case 1 or

Case 2 again.

Case 3: t ¼ hðd�Þ. From Lemma 4, d� < hðd�Þ < d0, so

hðtÞ ¼ hðd�Þ ¼ t, that is, an example of Case 2, and if we

let t maxfdijdi < tg, then t ¼ d�; hðtÞ > t, and the
recurrence stops.

From the above discussion, if the task set is not

schedulable, then during the whole iterative process, the

value of t is always larger than or equal to d� (stopped

with t ¼ d�), and we have hðtÞ � hðd�Þ > d� � dmin.

Therefore, when hðtÞ � dmin, the task set is schedulable.tu

Theorem 5 is also a process to find d� for unschedulable
task sets; hence, it can also be presented as: a general task
set is schedulable if and only if U � 1 and the algorithm
cannot find d�. For a schedulable system, when hðtÞ � dmin,
if we change the stopping condition to let the iterative
process continue, then after one or two more iterations, t
will converge at 0.

In the iterative process of Theorem 5, t takes the value hðtÞ,
and when hðtÞ < t progress toward zero is made. Only when
hðtÞ ¼ t, we need to force the process to take a value less than
hðtÞ. This is when we need to compute maxfdijdi < tg to let
the iteration continue; maxfdijdi < tg can be calculated by
the following approach.

For a single task �j with Dj < t, the last arrived job of task
�j with dj � t is released at:

t�Dj

Tj

� �
Tj;

and the absolute deadline of this job is:

dj ¼
t�Dj

Tj

� �
Tj þDj: ð8Þ

If dj ¼ t, we let dj move to the previous deadline
dj ¼ dj � Tj. For the task set, maxfdijdi � tg is the largest
such dj for each task.

Let the initial value of dtmax ¼ 0, so the value of
maxfdijdi � tg can be obtained by

forfor ðj ¼ 1; j � n; jþþÞ
fifif ðDj < tÞ
fdj  ðt�DjÞ=Tj

� 	
Tj þDj;

ifif ðdj ¼ tÞ dj  dj � Tj;
ifif ðdj > dtmaxÞ dtmax  dj;

gg
After the recurrence, dtmax ¼ maxfdijdi � tg.

The above algorithm for finding the maxfdijdi � tg has
the complexity OðnÞ, which is only equivalent to one hðtÞ
calculation.
Illustration of QPA. The following example illustrates the
QPA test and its improvement. The task set includes
eight tasks.

Schedulability is tested by the following steps:
Step 1. Calculate the utilization of the task set,

U ffi 0:803 � 1.
Step 2. Calculate upper bound La by (4), La ¼ 18;000.

(There are 1,735 absolute deadlines in ð0; LaÞ.)
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Step 3. Calculate upper bound Lb by (5) and (6),

Lb ¼ 16;984. (There are 1,638 absolute deadlines in ð0; LbÞ.)
(Using the minimum value mean, there are 1,638

absolute deadlines that must be checked by the old

approach.)
S t e p 4 . Lb < La; L ¼ Lb ¼ 16;984; dmin ¼ 16 a n d

maxfdijdi < Lg ¼ 16;974. Check the schedulability by the

QPA algorithm given in Theorem 5:

1. t ¼ 16;974; hðtÞ ¼ 8;890,
2. t ¼ 8;890; hðtÞ ¼ 3;080,
3. t ¼ 3;080; hðtÞ ¼ 1;098,
4. t ¼ 1;098; hðtÞ ¼ 362,
5. t ¼ 362; hðtÞ ¼ 118,
6. t ¼ 118; hðtÞ ¼ 26,
7. t ¼ 26; hðtÞ ¼ 2.

Since hðtÞ ¼ 2 � dmin0 the task set is schedulable.

Only 7 iterations required compared to 1,638 previously.
More illustration examples can be found in [20].

5 IMPROVEMENT TO THE UPPER BOUND La
In this section, based on Theorem 1, we give a tighter upper

bound for the exact schedulability test; there is no restriction

on the relationship between relative deadlines and periods.

Theorem 6. A general task set is schedulable if and only if

U � 1 and

8t 2 P; hðtÞ � t;

where P ¼ fdkjdk ¼ kTi þDi ^ dk < L�a; k 2 Ng, and where

L�a ¼ max ðD1 � T1Þ; . . . ; ðDn � TnÞ;
Pn

i¼1 ðTi �DiÞUi
1� U

� �
:

ð9Þ

Proof. When t � max1�i�nfDi � Tig , t � Di � Ti , t�
Di � �Ti , bt�Di

Ti
c � �1, 1þ bt�Di

Ti
c � 0, then we have

hðtÞ ¼
Xn
i¼1

max 0; 1þ t�Di

Ti

� �� �
Ci

¼
Xn
i¼1

1þ t�Di

Ti

� �
 �
Ci;

� t
Xn
i¼1

Ci
Ti
þ
Xn
i¼1

Ci
Ti
ðTi �DiÞ:

If U � 1 and the task set is not schedulable, t < hðtÞ

) t < t
Xn
i¼1

Ci
Ti
þ
Xn
i¼1

Ci
Ti
ðTi �DiÞ;

, t 1�
Xn
i¼1

Ci
Ti

 !
<
Xn
i¼1

Ci
Ti
ðTi �DiÞ;

, t <

Pn
i¼1ðTi �DiÞUi

1� U :

ut

To incorporate the upper boundL�a into QPA, in Section 4,

we only need to let L ¼ minðL�a; LbÞ when U < 1.

6 EXPERIMENTS AND EVALUATIONS

This section describes experiments that have been con-
ducted to evaluate the performance of the QPA algorithm.
We compare the number of calculations required by the
original approach with upper bounds La; Lb, and L�a, and
the QPA algorithm. Comparison is by an extensive number
of experiments on a large range of task sets with randomly
generated parameters.

Since the task generation policies can significantly affect
experimental results, we give the details of the policies we
used in the experiments as follows.

Utilizations generation policy. In order to get uni-
formly distributed task utilizations in the range 0-1, we use
the UUniFast algorithm [6] to generate the task utilizations.
Bini and Buttazzo [6] showed that the UUniFast algorithm
can efficiently generate task utilizations with uniform
distributions.

Periods generation policy. The range of task periods is

significant. If we want to explore say six orders of magnitude

(e.g., 1-1,000,000), then a set of random choices within this

range will result in 99 percent of values being in the range

10,000-1,000,000 (only three orders of magnitude are actually

explored in the expected six orders). Hence, we use the

approach recommended by Davis and Burns [17] to generate

the task periods according to an exponential distribution. Let

Tmax ¼ max1�i�nfTig, and Tmin ¼ min1�i�nfTig. In order to

make sure the periods are uniformly distributed in a given

range (the maximum value of Tmax=Tmin), the range of the

periods are divided into the intervals eo � e1; e1 � e2;

e2 � e3; . . . ; if there are k intervals, then ðn� 1Þ=kb c task

periods are generated randomly in each interval, and the

remaining (ðn� 1Þ mod k) task periods are generated

randomly in intervals eo � e1 through eððn�1ÞmodkÞ�1 �
eðn�1Þmodk. In each interval, the task periods are generated

according to a uniform distribution, by using the rand()

function of the C language.
For example, if the number of tasks is 14, and we want

Tmax=Tmin � 100, first let T14 ¼ 100, and then 13 task periods
are generated between 1 and T14. Since ln 100 ffi 4:605, the
range is divided into five intervals, which are eo � e1;
e1 � e2; . . . ; e4 � e4:605. Then, two task periods are generated
randomly in each interval, and for the other three periods,
one is generated in each of three randomly chosen intervals,
shown as follows:

eo � e1 : �1; �2; �11;

e1 � e2 : �3; �4; �12;

e2 �3: �5; �6; �13;

e3 �4: �7; �8;

e4 �4:605: �9; �10:

Relative deadlines generation policy. The relative dead-
line of each taskDi is generated randomly from ½a; b�, where a
is the lower bound value of Di, and b is the upper bound
value ofDi. In our default generation policy, the value of each
a: when Ci < 10; a ¼ Ci; when 10 � Ci < 100; a ¼ 2	 Ci;
when 100 � Ci < 1;000; a ¼ 3	 Ci; and when Ci � 1;000;
a ¼ 4	 Ci. The default value b ¼ 1:2	 Ti.
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In some experiments, we change the default value of a

and b for the purpose of observation. If we do not specify,
the relative deadlines are generated by the above default

policy.
Measurement metric. A reasonable metric to compare

results is to measure the number of times the processor
demand function hðtÞ has to be calculated. Since the old
approach needs to check all the absolute deadlines in the
upper bound when a task set is schedulable (but can stop once
a deadline miss is found for an unschedulable system), we do
the experiments separately for schedulable and unschedul-
able task sets. When we experiment on schedulable task sets,
if a generated task set is unschedulable, the program discards
it and does not count it into the experimental results.
However, all experiments use the same default generation
policy described above (unless an alternative is specified).

6.1 Experiments on Schedulable Task Sets

In this section, we experiment on the task sets which are
schedulable. All task sets are randomly generated accord-
ing to the above default policies or the given policy if it is
specified. Each point on the diagrams is the average of
6,000 randomly generated schedulable task sets.

Due to the magnitude of the improvement, all the
comparison graphs use logarithm scales on the y-axis. In all
experiments, four situations are compared; in the figures,
“La,” “Lb,” and “L�a” present the number of deadlines that
need be checked in La; Lb, and L�a by the old method that
must check all deadlines, and the “QPA algorithm”
presents the required calculation by QPA. Note all tests
are necessary and sufficient, and hence, no task set passes
one test while failing the others.

Since the density of a task set:

� ¼
Xn
i¼1

Ci=minfDi; Tig � 1

is a utilization-based condition which is sufficient for EDF
schedulability, in each experiment of this section, we also
tested the density of each schedulable task set to see what
percentage of the task sets have � > 1, in which case we
cannot judge feasibility by this simple but sufficient test. In
these experiments, we observed that nearly all the schedul-
able task sets have the density � > 1, and hence, an exact
schedulability test is required.

6.1.1 Impact of the Number of Tasks

In this experiment, we let each task set’s utilization be 0.9

and the maximum value of Tmax=Tmin be 1,000. The number

of the required calculation times is therefore a function of

the number of tasks. Results of this experiment are

illustrated in Fig. 2.

6.1.2 Impact of the Task Periods Range

In this experiment, the number of tasks for each task set is

30, and each task set’s utilization is 0.9. The number of

calculation times is thus a function of the maximum value

of Tmax=Tmin. Results of this experiment are illustrated in

Fig. 3.

6.1.3 Impact of the Utilization

This experiment investigates the impact of the task set’s

utilization. The size of each task set is 30 and

Tmax=Tmin � 1;000. Results of this experiment are illustrated

in Fig. 4.

6.1.4 Impact of the Maximum Value Di=Ti
Here, we change the default generation policy of relative

deadlines. Let each relative deadline be generated ran-

domly from a to b, where a remains the same value as the

default generation policy and b ¼ maxfDi=Tig 	 Ti. The

utilization of each task set is 0.9, task number is 30, and
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Tmax=Tmin � 1;000. The number of calculation times is

therefore a function of the value maxfDi=Tig. Results of

this experiment are illustrated in Fig. 5.
Our default generation policy for each relative dead-

line is b ¼ maxfDi=Tig ¼ 1:2. From the above experiment,

we can see that the QPA algorithm can perform faster

when b > 1:2.

6.1.5 Frequency Distribution of the Task Sets

This experiment explores what percentage of the task sets

can complete each schedulability test in a given number of

hðtÞ calculations by QPA. We divide each interval on the

x-axis into 10; this means if a schedulable task set needs

12 calculations to complete its schedulability test, then this

task set is counted into the interval 10 � 20. The value of

the y-axis presents the percentage of the tested task sets.
This experiment is based on 80,000 randomly generated

task sets which are schedulable. For each task set, the

utilization is 0.9, the number of tasks is 30, and the

maximum value of Tmax=Tmin is 10,000. Results of this

experiment are illustrated in Fig. 6.
We can see from Fig. 6 that the vast majority of task sets

complete each schedulability test in less than 30 calculations

ofhðtÞ, and all the 80,000 task sets in our experiment complete

each schedulability test in less than 60 times calculations.

6.2 Experiments on Unschedulable Task Sets

As QPA starts from L and works backward toward 0, it

would seem to be at a disadvantage, as the first deadline

miss is often closer to 0. Indeed, it is possible to construct

example task sets that fail on the very first deadline but

which take QPA 30 or more interactions before concluding

that the task set is unschedulable. In addition, the simula-

tion results [20] show that checking forward from t ¼ 0

using a presorted sequence of all absolute deadlines finds

an overflow with the least number of checked deadlines.

However, sorting incurs significant extra efforts. Never-

theless, we will show in the following experiments that,

overall, QPA does perform significantly better than the

previous approaches with the forward order, even when the

cost of sorting (which is required by the old method) is

ignored—as it is in these experiments.

When all task sets are schedulable, by the old results, all
the absolute deadlines in an upper bound have to be
checked, so we only need to count how many deadlines
there are in the upper bound for each experiment. But when
the task sets are unschedulable, we need to sort all
deadlines and check every deadline until we find a failure.
Due to the large amount of calculations required by the old
approach, in this section, we could not experiment on so
large a range of the task sets as the experiments in the
previous section.

Each point on the diagram is the average of 6,000
randomly generated unschedulable task sets. The “old
method” on the graph means the number of absolute
deadlines which have been checked by the original
approach using the forward-order scheme. Note that these
results are presented using a linear y-axis.

6.2.1 Impact of the Task Periods Range

In this experiment, the utilization of each task set is 0.9 and
the size of each task set is 30. Results of this experiment are
illustrated in Fig. 7.

The default value of the maximum value of Tmax=Tmin for
all following experiments in this section is set to 1,000. From
experiments described in Sections 6.1.2 and 6.2.1, we can see
that if the maximum value of Tmax=Tmin is larger than 1,000,
then the improvement of QPA over the old approach will
increase significantly.
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6.2.2 Impact of the Tasks Number

In this experiment, the utilization of each task set is 0.9 and
the maximum value of Tmax=Tmin is 1,000. Results of this
experiment are illustrated in Fig. 8.

6.2.3 Impact of the Task Set’s Utilization

In this experiment, we let the size of each task set be 30 and
the maximum value of Tmax=Tmin be 1,000. Results of this
experiment are illustrated in Fig. 9.

6.2.4 Frequency Distribution of the Task Sets

This experiment is based on 60,000 randomly generated
task sets which are unschedulable. For each task set, the
utilization is 0.9, the task number is 30, and the maximum
value of Tmax=Tmin is 1,000. Results of this experiment are
illustrated in Fig. 10.

7 CONCLUSION

In this paper, we have addressed and solved the problem of
providing fast schedulability analysis which is necessary
and sufficient for EDF scheduling with arbitrary relative
deadlines. From the experiments described in Section 6 and
a more extensive range of experiments recorded in an
available technical report [20], we can see that a number of
factors can significantly affect the experimental results of the
old methods; in some circumstances, they have exponential

growth. The experimental results for QPA are similar for all
kinds of task sets, and QPA reduces the required number of
calculations exponentially in almost all situations.

Across all experiments (i.e., 80,000 schedulable and
60,000 unschedulable task sets), we observed that by
QPA, more than 96 percent of the task sets complete each
schedulability test in less than 30 calculations of hðtÞ. The
function hðtÞ has the complexity OðnÞ, equal to calculating a
task set’s utilization. This means that the vast majority of
the task sets in the experiments only require a calculation
which is equivalent to less than 30 times the utilization-
based test. The previous methods (average across all
experiments) require 65,000 such tests.

We also observed that the new upper boundL�a dominates
Lb when each Di is no larger than 2Ti. The calculation of Lb
requires an iterative process which may need more iterations
than the entire QPA algorithm. Since L�a is simpler to
calculate than Lb, we would suggest that only L�a is used in
QPA when each Di is not significantly larger than 2Ti.
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