
Scheduling Algorithms for Real-Time Systems

Fredrik Lindh
Master Program in Computer

Engineering
Mälardalens University,

Sweden
flh07001@student.mdh.se

Thomas Otnes
Master Program in Computer

Engineering
Mälardalens University,

Sweden
tos07001@student.mdh.se

Jessica Wennerström
Master Program in Computer

Engineering
Mälardalens University,

Sweden
jwm07002@student.mdh.se

ABSTRACT
Scheduling algorithms are a governing part of real-time sys-
tems and there exists many different scheduling algorithms
due to the varying needs and requirements of different real-
time systems. The choice of algorithm is important in every
real-time system and is greatly influenced by what kind of
system the algorithm will serve. Architectures of today cover
both uniprocessor and multiprocessors which have their own
challenges and complexities. In this paper we present an
overview of some scheduling algorithms for real-time systems
on both uniprocessor and multiprocessor systems and men-
tion some that are optimal in each category. This overview
also includes minor explanations of important concepts in
real-time systems and scheduling.

1. INTRODUCTION
The scheduling algorithm is of paramount importance in a
real-time system to ensure desired and predictable behavior
of the system. Within computer science real-time systems
are an important while often less known branch. Real-time
systems are used in so many ways today that most of us use
them more than PCs, yet we do not know or think about it
when we use the devices in which they reside. Cars, planes
and entertainment systems are just some devices in which
real-time systems reside, governing the workings of that de-
vice while we do not consider that such a system exists
within the chosen device. A real-time-system is a computer
system in which the key aspect of the system is to perform
tasks on time, not finishing too early nor too late. A classic
example is that of the air-bag in a car; it is of great impor-
tance that the bag inflates neither too soon nor too late in
order to be of aid and not be potentially harmful.

The choice of algorithm can greatly influence the behavior
of a real-time system and for this reason there are many
available algorithms. For the different categories of real-
time systems there are specialized algorithms developed and
in this paper we will attempt to give an overview of many
of the available real-time algorithms.

Other overviews of real-time scheduling algorithms have been
presented by Burns[1], Burns and Audsley[2] and by Mo-
hammadi and Akl[3]. Those are somewhat more in depth
on some topics then this overview.

The organization of this paper is as follows. In section 2
basic concepts of real-time system and scheduling are ex-
plained. Section 3 presents the scheduling algorithms being
the main section of this paper. It covers static and dynamic
uniprocessor and multiprocessor algorithms presenting some
algorithms in each area. The final section, 4, covers sum-
mary and conclusions.

2. BASIC CONCEPTS
A scheduling algorithm can be seen as a rule set that tells
the scheduler how to manage the real-time system, that is,
how to queue tasks and give processor-time. The choice of
algorithm will in large part depend on whether the system
base is uniprocessor, multiprocessor or distributed.

A uniprocessor system can only execute one process at a
time and must switch between processes, for which reason
context switching will add some time to the overall execution
time when preemption is used.

A multiprocessor system will range from multi-core, essen-
tially several uniprocessors in one processor, to several sep-
arate uniprocessors controlling the same system.

A distributed system will range from a geographically dis-
persed system to several processors on the same board. In
a distributed system the nodes are autonomous while in a
multiprocessor system they collaborate somewhat more, but
this line is not as clear cut as it may sound as similar com-
munication delays will occur.

In real-time systems processes are referred to as tasks and
these have certain temporal qualities and restrictions.[4] All
tasks will have a deadline, an execution time and a release
time. In addition there are other temporal attributes that
may be assigned to a task. The three mentioned are the
basic ones. The release time, or ready time is when the task
is made ready for execution. The deadline is when a given
task must be done executing and the execution time is how
long time it takes to run the given task. In addition most
tasks are recurring and have a period in which it executes.
Such a task is referred to as periodic. The period is the time
from when a task may start until when the next instance of



the same task may start and the length of the period of a
task is static.

An example, shown in Figure 1, of scheduling can be made
using three tasks T1, T2 and T3 with execution time and
deadline of (1, 3), (4, 9) and (2, 9) respectively and periods
equal to their deadlines. These tasks can be scheduled so
that all tasks get to execute before the deadlines.

Figure 1: Scheduling of T1,T2 and T3.

A system can consist of many tasks and the example above
uses three periodic tasks, but there can also be aperiodic
tasks which are tasks without a set release-time. These tasks
are activated by some event that can occur at more or less
any time or maybe even not at all. The scheduling example
shows a minor system and the schedule can be made either
before the system is activated, which is referred to as off-line
scheduling, or during the running of the system and is then
referred to as online scheduling. The example is very simple
as it does not show priorities or use preemption. There are
also other properties of interest when looking at scheduling.
Properties a task may use briefly explained:

Figure 2: The basic temporal attributes of a task.

• Release/ready time: The time a task is ready to run
and just waits for the scheduler to activate it.

• Deadline: The time when a task must be finished ex-
ecuting.

• Execution/run time: The active computation time a
tasks need to complete.

• Worst Case Execution Time (WCET): The longest
possible execution time for a task on a particular type
of system.

• Response time: The time it takes a task to finish exe-
cution. Measured from release time to execution com-
pletes, including preemptions.

• Priority/weight : The importance given a task in con-
text of the schedule at hand.

Preemption is when a task that is executing on the proces-
sor becomes interrupted, its state is saved and then it is
exchanged for another task. This switching of tasks on a
processor is referred to as a context switch and takes a small
amount of time each time it occurs. A preempted task will
get to finish executing after the preempting task is done.
Not all processors support preemption and algorithms can
be divided into preemptive and non-preemptive scheduling
algorithms. In real-time scheduling preemption is governed
by priority.

A real-time system also have requirements based on dead-
line, a real-time system can either be hard or soft depending
on the consequences of missing a deadline.

A hard real-time system is never allowed to miss a deadline
because that can lead to complete failure of the system. A
hard real-time system can be safety-critical and this means
that if a deadline is missed it can lead to catastrophically
consequences which can harm persons or the environment.
It is a crucial requirement that a task starts on time and do
not miss the deadline; being not too early nor too late.

In a soft real-time system a deadline is allowed to be missed,
while there is no complete failure of the system it can lead
to decreased performance.

3. SCHEDULING ALGORITHMS
The scheduling algorithms can be divided into off-line schedul-
ing algorithms and online scheduling algorithms. In offline
scheduling all decisions about scheduling is taken before the
system is started and the scheduler has complete knowledge
about all the tasks. During runtime the tasks are executed
in a predetermined order. Offline scheduling is useful if we
have a hard real-time system with complete know-ledge of
all the tasks because then a schedule of the tasks can be
made which ensures that all tasks will meet their deadlines,
if such a schedule exists.

In online scheduling the decisions regarding how to sched-
ule tasks are done during the runtime of the system. The
scheduling decisions are based on the tasks priorities which
are either assigned dynamically or statically. Static priority
driven algorithms assign fixed priorities to the tasks before
the start of the system. Dynamic priority driven algorithms
assign the priorities to tasks during runtime.

3.1 Uniprocessor
Scheduling algorithms on uniprocessors have to ensure that
all tasks in the system are given enough execution time at
certain points in time to meet their deadlines if possible.
Even if the algorithms presented in the following section
only schedules processor time, there exists algorithms taking
other resources into account.

3.1.1 Static algorithms
Rate monotonic (RM) scheduling algorithm[5, 6] is a unipro-
cessor static-priority preemptive scheme. The algorithm is
static-priority in the sense that all priorities are determined
for all instances of tasks before runtime. What determines
the priority of a task is the length of the period of the re-
spective tasks. Tasks with short period times are assigned
higher priority. RM is used to schedule periodic tasks.



The following are preconditions for the rate monotonic al-
gorithm formalized by Liu and Layland [5].

1. Periodic tasks have constant known execution times
and are ready for execution at the beginning of each
period(T ).

2. Deadlines(D) for tasks are at the end of each period:

(D = T )

3. The tasks are independent, that is, there is no prece-
dence between tasks and they do not block each other.

4. Scheduling overhead due to context switches and swap-
ping etc. are assumed to be zero.

There exists a scheduling algorithm similar to RM called
deadline monotonic (DM)[7], used when D < T which al-
lows us to see RM as a specific case of DM. In the case
of the DM algorithm the deadline determines the priority
of the task; the shorter the deadline the higher the prior-
ity. Both RM[5] and DM[7] are optimal static scheduling
algorithms. It has been shown[5] that for an optimal static
priority driven algorithm an upper bound for the processor
utilization is 70 percent for large task sets.

Example of RM, see Figure 3: Tasks T1 & T2 with execution
times & periods (1, 4) & (2, 6). T1 with a shorter period &
therefore higher priority runs before T2. They then run as
they are released.

Figure 3: Scheduling example of Rate-Monotonic.

3.1.2 Extensions of RM
There exist some extensions for RM to make it a more useful
algorithm. The extensions make it possible to use RM when
tasks share resources. To prevent simultaneous use of shared
resources a technique called semaphore, which is a sort of
lock, is used which a task must take before entering a critical
section and then must release after leaving the critical sec-
tion. A critical section is a piece of code accessing a shared
resource. When using semaphores problems with blocking
can occur. Blocking is when a task is prevented from exe-
cuting by tasks with lower priority. This occurs when a task
has already gained access to a semaphore and a task with
higher priority wants it. Then the task with higher priority
needs to wait until the semaphore becomes available. Dur-
ing that time other tasks can preempt the lower priority task
and execute as long as they do not require that semaphore
and thus the higher priority task is delayed even further.

This is called priority inversion, when a high priority task in
essence becomes the task with the lowest priority. Different
protocols for solving this problem are explained next.

Priority inheritance protocol (PIP)[8] dynamically changes
the priority of a task if it is blocking a higher priority task.
The priority is then set to the priority of the task it is
blocking. This is referred to as inheriting the priority. The
amount of times a high priority task can be blocked is the
number of semaphores it will use. So if a task will use m
semaphores it can in worst case be blocked m times per exe-
cution. A problem with this protocol is that it does not pre-
vent deadlock. Deadlock is when some task holds at least one
semaphore and still tries to lock another semaphore taken
by another task in a similar state and this will cause the
system to halt.

Priority ceiling protocol (PCP)[8] avoids deadlock by having
each semaphore assigned a priority ceiling which is the pri-
ority of the highest priority task that uses it. There are also
two restrictions that a task needs to fulfill which is; not hold
semaphores between instances and lock semaphores ”pyra-
midically”. To be able to preempt a task must have higher
priority than all used semaphores. Any holding task will
inherit the priority of a task becoming blocked but the pri-
ority ceiling will prevent a task from being blocked more
than once per execution.

1. Task T wants to lock semaphore S.

2. If the priority of T is higher than the highest priority
ceiling of all the currently locked semaphores, or if no
semaphores are locked, then T is allowed to lock S ;
else it becomes blocked.

3. If T however is blocked by another semaphore S’ locked
by task T’, T’ then inherits the priority of T.

4. When T’ releases semaphore S’, T gets to execute and
lock S.

Immediate inheritance protocol (IIP) is based on PCP and
uses priority ceilings for semaphores but differs in that as
soon as a semaphore is taken by a task that task inherits
the priority of the semaphore. In both PCP and IIP, in
contrast to PIP, deadlock is prevented and a task can only
be blocked one time. This means that if a task will use m
semaphores it can in worst case be blocked one time per
execution.

3.1.3 Dynamic algorithms
Earliest deadline first (EDF)[2, 5] is a dynamic priority
driven scheduling algorithm which gives tasks priority based
on deadline. The preconditions for RM are also valid for
EDF, except the condition that deadline need to be equal to
period. The task with the currently earliest deadline during
runtime is assigned the highest priority. That is if a task is
executing with the highest priority and another task with an
earlier deadline becomes ready it receives the highest prior-
ity and therefore preempts the currently running task and
begins to execute. EDF is an optimal[5, 9] dynamic priority
driven scheduling algorithm with preemption for a real-time



system on a uniprocessor. EDF is capable of achieving full
processor utilization[5].

Least laxity first (LLF)[2, 10], also known as least slack time,
is a dynamic priority driven scheduling algorithm that as-
signs priority based on the laxity. The definition of laxity is
the tasks deadline minus the remaining computation time of
the task. It can also be described as the maximum time a
task can wait before it needs to execute in order to meet its
deadline. The task with the currently least laxity is assigned
the highest priority and is therefore executed. The executing
task will be preempted by any other task with a currently
smaller laxity. When the task is executing the laxity re-
mains constant. If two tasks have similar laxity they will
continually preempt each other and it will therefore create
many context switches. But if we ignore the cost of the con-
text switches LLF is also, as EDF, an optimal[10] dynamic
scheduling algorithm.

3.1.4 Serving aperiodic tasks
There are systems where algorithms for scheduling of both
periodic and aperiodic tasks are needed. Due to the unpre-
dictable arrival of aperiodic tasks it is harder to guarantee
a response time. The server algorithms presented improve
the average response time for aperiodic tasks and are based
on RM, although similar approaches based on EDF exists.
One type of task that is generally not handled well is spo-
radic tasks. A sporadic task is an aperiodic task with a hard
deadline, WCET and a known minimum time between per-
mitted arrivals of the task called interarrival time. Assigning
a server high priority will improve its response time.

The background server algorithm[11] is one simple approach
for servicing soft deadline aperiodic tasks. If there are ready
periodic tasks they get priority over aperiodic tasks to run;
only when the processor is idle, no periodic tasks are execut-
ing, aperiodic arrivals are served in the background. This
implies that a high load of periodic tasks result in bad re-
sponse times for aperiodic tasks.

The polling server (PS) algorithm[11] is another aperiodic
server algorithm which is a bit more sophisticated. Aperi-
odic tasks are handled by a periodic task, the PS. Arrivals
of aperiodic tasks are served at the beginning of each of
the PS’s periods, if there are no request pending the server
suspends itself allowing periodic tasks to execute. A late ar-
rival, after suspension of the PS, will be queued and served
at the next task invocation.

The deferrable server (DS) algorithm[6] is an algorithm with
focus on quick response times for aperiodic tasks. The algo-
rithm improves the average response time for aperiodic tasks
compared to the background and polling server. The DS is a
special kind of periodic task with period and capacity, which
serves aperiodic tasks and can do so until available capac-
ity runs out, or the end of the period is reached. Regular
periodic tasks are ready at set times whereas the DS may
receive requests at anytime during the period and therefore
executes at different times. When the DS serves a request
capacity is consumed else capacity is preserved. However,
any remaining capacity at the end of the period is lost and
the DS is replenished at the beginning of the next period.

Assigning the server the highest priority is preferable if we
want good responsiveness and ensure that aperiodic tasks
meet their deadlines, while assigning the DS medium prior-
ity aperiodic tasks might miss their deadlines as other tasks
might preempt the server. A drawback is that the algorithm
violates the first assumption of RM since it allows the server
to defer its execution, thus it may not be ready to execute
at the beginning of the period.

An example of DS illustrated by Figure 4. The tasks, T1 &
T2, have the attributes presented in the RM example. The
deferrable server is assigned medium priority. At time two
an aperiodic request arrives. Since the server has medium
priority, T2 is preempted and the server serves the request.
The server capacity is exhausted by the aperiodic task which
executes for two time units. T1 becomes ready at time four
and executes for one time unit delaying the execution of
T2 even further. At time five T2 is allowed to finish and
the server replenishes its capacity. In the second period of
T2 there are no higher priority tasks ready so it is allowed
to execute immediately after release. After T2 has finished
executing, an aperiodic request occurs. The server is not
allowed to serve this request since T1 is also ready. When
T1 is finished the server will serve the request.

Figure 4: Scheduling example of Deferrable Server.
Ci is execution time and Ti is the period.

The priority Exchange server (PE)[11] is another capacity
preserving scheduling algorithm that uses a periodic server.
The algorithm resembles the DS algorithm but differs in how
capacity is preserved. The server replenishes its capacity at
the beginning of each period. Aperiodic tasks waiting to
be served at the start of a new period will be executed at
the priority of the server and consume capacity, assuming
the server currently has the highest priority. On the other
hand, if there are no aperiodic tasks ready for execution the
server allows a ready lower-priority periodic task to execute
in exchange for accumulation of capacity at the priority level
of that periodic task. Whenever an aperiodic task requests
to run capacity available for the server at the task with the
highest priority, amongst those with which capacity has been
exchanged, will be consumed by the aperiodic task. This
type of capacity exchange continues on lower levels with pe-
riodic tasks, server capacity will therefore not be lost, just



stored at lower priority levels or consumed by aperiodic re-
quests unless at some point the capacity is exchanged with
the idle task.

The DS algorithm is not as complex as the PE algorithm due
to the way capacity is preserved at the priority of the server.
The price to pay for this simplicity is a lower schedulability
bound than PE. In order for both algorithms to function
properly particular resource utilization has to be reserved
for the server. The server utilization, US , which is the ratio
of execution time to the period, directly affects the schedu-
lability of the system. The highest utilization bound for
periodic tasks at which the periodic tasks can be scheduled,
UP , is determined by RM.

DS : UP = ln
US + 2

2US + 1

PE : UP = ln
2

US + 1

From the equations we see that for any given value, Us,
where 0 < US < 1, the schedulability bound, UP , is lower
for the DS algorithm than in the case of the PE algorithm.
Another implication is that for a given Up the server utiliza-
tion is lower for the DS algorithm than for the PE algorithm.

From a server perspective scheduling sporadic tasks means
that the server is required to have a period less or equal to
the interarrival time of the sporadic task and not consume
more execution time than the capacity available.

The sporadic server (SS)[11], like the DS, consists of a pe-
riodic server for aperiodic tasks but how it replenishes ca-
pacity differs. The server determines at which time in the
future capacity will be replenished depending on when aperi-
odic requests occur and the priority of the current executing
periodic tasks.

The explanation of the algorithm involves the following terms:

• Pexe the priority level of the currently executing task
in the system.

• PS the priority level of the sporadic server.

• Active is used to describe the priority level when Pexe

> PS .

• Idle is the opposite of active, Pexe < PS .

• RTS is the time at which the server replenishes con-
sumed capacity.

The sporadic server starts with fully replenished capacity.
Whenever the server becomes active RTS is set to the cur-
rent time added to the period of the server. How much
the server should replenish at RTS is determined when the
server becomes idle or all the capacity has been consumed.
The amount to replenish is the capacity consumed from the
point the server was activated to the point it becomes idle
or runs out of capacity. The sporadic server performs bet-
ter than the background server and the polling server. The
performance is comparable to the DS and PE algorithms al-
though they are in some cases inferior to the SS algorithm.

3.2 Multiprocessor
In multiprocessor scheduling, algorithms developed for unipro-
cessor scheduling can be applied if we consider each core of
the multiprocessor as an isolated core, which is a unipro-
cessor. However, in multiprocessor scheduling the difficulty
of verifying that the execution of different tasks on multiple
cores does not interfere with each other and also determin-
ing which tasks should be given to a certain core increases
the complexity greatly compared to uniprocessor schedul-
ing. Moreover scheduling algorithms for multiprocessors of-
ten involves heuristics to simplify the task of finding a fea-
sible schedule. The two main approaches for scheduling al-
gorithms on multiprocessors are global scheduling and par-
titioning scheduling.

Global scheduling algorithms put ready tasks in a queue
sorted based on priority. The task with currently highest
priority, which is first in the queue, is selected by the sched-
uler and will execute on one of the processors and may be
preempted or migrated if necessary.

In partitioning scheduling algorithms each task is assigned
to one processor and will exclusively execute on that proces-
sor. This will result in that instead of being a multiprocessor
problem it will be a set of uniprocessor problems. Unipro-
cessor algorithms can then be used for each processor which
is an advantage, but the problem of partitioning the task
to the processors is hard and usually solved by using non-
optimal heuristic. Also as shown by [13] there exist systems
which are schedulable if and only if tasks are not partitioned.

The myopic algorithm[12] is a multiprocessor algorithm that
schedules tasks not only for CPU time but also for shared
resource requirements and uses heuristics to simplify the
search for a feasible schedule at any given time. As a new
task arrives it will be given to one of the processors which
will see if schedulability of that task can be guaranteed. If
no schedule can be found the task will be sent on to another
processor, while it will be kept if a schedule is found that can
guarantee that task along with all currently existing tasks
on that processor. When a new task is made ready this
algorithm looks at:

• Arrival time TA

• Deadline TD

• Worst case processing time TP

• Resource requirements TR

Premises for tasks are that they are independent, nonperi-
odic, non-preemptive and use resources in shared or exclu-
sive mode. When scheduling a task the algorithm calculates
the earliest start time, TEST for the task based upon when
the required resources will be available. The following con-
dition is to be true for every task when a new schedule is
made:

0 < TA < TEST < (TD − TP )

All tasks that are at any one point to be scheduled is placed
in a list sorted according to deadline and a schedule is searched
for by using a tree structure to find feasible schedules in



which the root is an empty schedule and each leaf is a sched-
ule while not every leaf is feasible. The tasks are inserted
into the schedule, which then is one node level down in the
tree, one at a time until a schedule is found or a deadline
miss will occur. In the case of a miss there will be some back
tracking in the tree and a new schedule will be looked at and
so forth until a plausible schedule is found. Every time an-
other task is to be inserted there is a heuristic function H,
which looks at more than deadline, is called to evaluate a
portion of the tasks in the list to find the most appropriate
task to insert into the schedule at that point.

The original version of this algorithm looked at all tasks that
were not in the schedule every time a task was to be added,
but this algorithm only looks to the first few in a sorted
list and this near sightedness is what makes the algorithm
myopic. Compared to the non-myopic version of this algo-
rithm and to other multiprocessor algorithms of its time the
myopic algorithm was an efficient improvement. The my-
opic algorithm is O(nk) where 1 ≤ k ≤ n depending on the
number of tasks to be scheduled at the time as n equals all
tasks to be scheduled and k is a subset there of. This then
makes the myopic algorithm have O(n) while the original
non-myopic algorithm was O(n2).

Pfair scheduling algorithms[14] are based upon the idea of
giving each task access to resources in proportion to the
demand for resources it has in comparison to the other tasks
scheduled. Tasks are given a new attribute called rational
weight (x.w) which is defined as execution requirement (x.e)
divided by period (x.p), in which x.e and x.p are integer
values and x.p > 1. To be schedulable 0 < x.w < 1 must be
true for any task and the sum of all tasks x.w < m, where
m is the sum of all resources. Tasks are then split into
subtasks, that is points where a task may be preempted so
another will get access to resources for awhile, and a function
is used to determine how to schedule these subtasks such
that all requirements are met. In addition there are several
rules governing how this is done correctly to get the greatest
benefit from this approach. There are at least three known
optimal pfair algorithms: PF[14], PD[15] and ER-PD[16].

4. SUMMARY AND CONCLUSIONS
In the simple case, scheduling may seem straight forward
and is easy enough to understand, but once more tasks are
added it becomes more troublesome to complete a schedule.
Introducing several resources makes for more complicated
schedules and increases complexity in the algorithms used
to create these schedules. The requirements that real-time
systems must fulfill are several and equally many are the
approaches how to schedule such systems. As mentioned in
this paper optimal algorithms exist but their optimality is
often only theoretical and not practical in actual systems.

The scheduling of aperiodic and sporadic tasks is more dif-
ficult than periodic tasks due to their unpredictability. To
overcome this, algorithms based on server tasks for handling
aperiodic arrivals are one solution. Algorithms of this kind
are an extension to the scheduling algorithm governing the
system. All servers presented in this paper are based upon
systems working on the rate monotonic algorithm, but there
are other server algorithms extending systems based on the
earliest deadline first algorithm. Several of the presented

server algorithms have a drawback in that they violate a
requirement of the rate monotonic algorithm stating that a
task should be ready to execute at the beginning of every
period. Yet, servers offer an advantage when dealing with
aperiodic tasks. Another kind of extension algorithms are
protocols of which some are mentioned in this paper. They
aid in dealing with mutual exclusion and deadlocks.

This shows that the complexities on uniprocessor systems
can be quite high and yet it is far greater on multiproces-
sor systems which are becoming the commonplace even in
small real-time systems. As complexity increases utilization
decreases and on multiprocessor systems with static priority
scheduling it can be at most 50%[17].

Multiprocessor systems are the future as we see it now, but
finding algorithms that takes full advantage of these systems
is an arduous task in which much effort has been and is
being made by researchers. Future work could be to focus
on these new algorithms being produced as well as dynamic
based server algorithms.

5. REFERENCES
[1] Burns A.,”Scheduling hard real-time systems: a review”

Software Engineering Journal, May 1991.

[2] Burns A. and Audsley N., ”REAL-TIME SYSTEM
SCHEDULING” Predicatably Dependable Computer
Systems, Volume 2, Chapter 2, Part II. or Department of
Computer Science, University of York, UK.

[3] Mohammadi A. and Akl S. G., ”Scheduling Algorithms
for Real-Time Systems”, Technical Report No. 2005-499,
School of Computing, Queen’s University Kingston,
Ontario Canada K7L 3N6, July 15, 2005.

[4] Cottet F., Delacroix J. and Mammeri Z., ”Scheduling in
Real-Time Systems”, published by John Wiley & Sons
Ltd, Chichester, West Sussex, England, ISBN
0-470-84766-2, year 2002.

[5] Liu C.L. and Layland J.W., ”Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”
Journal of the Association for Computing Machinery,
vol. 20, no. 1, pp. 46-61., year 1973.

[6] Strosnider J. K., Lehoczky J. P. and Sha L., ”The
Deferrable Server Algorithm for Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments”, IEEE
Transactions on Computers, vol. 44, no. 1, January 1995.

[7] Leung J. Y.-T., Whitehead J., ”On the complexity of
fixed priority scheduling of periodic, real-time tasks”,
Performance Evaluation, vol. 2, issue 4, pages 237-250,
December 1982.

[8] Sha L., Rajkumar R. and Lehoczky J. P., ”Priority
Inheritance Protocols: An Approach to Real-Time
Synchronisation”, IEEE Transactions on Computers
39(9), pp. 1175-1185, September 1990.

[9] Dertouzos M., ”Control robotics: The procedural control
of physical processes”, Proc. IFIP Cong., pp. 807-813,
year 1974.

[10] Dertouzos M.L. and Mok A.K.L., ”Multiprocessor
On-Line Scheduling of Hard Real-Time Tasks” IEEE
Transactions on Software Engineering, vol. 15, no. 12,
December 1989.

[11] Sprunt B., ”Aperiodic Task Scheduling for Real-Time
Systems” Ph.D. Dissertation, Department of Electrical



and Computer Engineering, Carnegie Mellon University,
August 1990.

[12] Ramamritham K., Stankovic J. A. and Shiah P.-F.,
”Efficient Scheduling Algorithms for Real-Time
Multiprocessor Systems”, IEEE Transactions on Parallel
and Distributed Systems, vol. 1, no. 2, April 1990.

[13] Carpenter J., Funk S., Holman P., Srinivasan A.,
Anderson J. and Baruah S., ”A Categorization of
Real-time Multiprocessor Scheduling Problems and
Algorithms”, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, Edited by J. Y.
Leung, Published by CRC Press, Boca Raton, FL, USA,
year 2004.

[14] Baruah S.K., Cohen N., Plaxton C.G., and Varvel D.,
”Proportionate progress: A notion of fairness in resource
allocation.”, Algorithmica, 15:600-625, year 1996.

[15] Baruah S.K., Gehrke J. and Plaxton C.G., ”Fast
scheduling of periodic tasks on multiple resources”,
Proceedings of the 9th International Parallel Processing
Symposium, p. 280-288, April 1995.

[16] Anderson J. H. and Srinivasan A., ”Early-Release Fair
Scheduling”, Department of Computer Science,
University of N. Carolina, Chapel Hill, NC 27599-3175,
year 2000.

[17] Andersson B. and Jonsson J., ”The utilization bounds of
portioned and pfair static-priority scheduling on
multiprocessors are 50%”, Department of Computer
Engineering, Chalmers University of Technology, SE-412
96 Göteborg, Sweden, year 2003.


