1EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 10, OCTOBER (989

1261

Some Results of the Earliest Deadline Scheduling
Algorithm

HOUSSINE CHETTO ano MARYLINE CHETTO

Abstract—-Task scheduling is an important issue in the design of a
real-time computer system because tasks have execution deadlines that
must be met, otherwise the system fails with severe consequences upon
the environment. In this paper, we study the problem of scheduling
periodic time critical tasks on a monoprocessor system. A periodic time
critical task consists of an infinite number of requests, each of whick
has a prescribed deadline. Tasks are assumed to meet their timing re-
quirements when scheduled by the Earliest Deadline algorithm and
preemptions are allowed. We report results from some investigations
into the problem of making optimum use of the remaining processor
idle time in scheduling periodic tasks either as soon as possible or as
late as possible. The major results consist of the statement and proof
of properties relating to localization and duration of idle time intervals
and enable us to provide an efficient algorithm for determining maxi-
mum quantity of total idle time available between any two instants, We
describe how these results can be applied, first to the decision problem
that arises when a sporadic time critical task occurs and requires to be
run at an unpredictable time and d, to the scheduling problem
that arises in a fault tolerant system using the deadline mechanism for
which each task implements primary and alternate algorithms.

Index Terms—Deadline mechanism, idle time, preemptive schedul-
ing, real-time.

I. INTRODUCTION

URRENTLY, the field of real-time scheduling is the

focus of a great deal of research interest. This is due
to the very frequent use of digital computers in real time
applications, growing sophistication in real-time software
for the last few years, and an increased interest in im-
proving system performance and reliability.

In real-time monitoring and control applications, the
controlling system built around one or more computers is
integrated into its environment and acts on line upon it
through an appropriate instrumentation so as to lead it into
a desired state. The controlling system which amounts to
a closed loop one, accepts data from the sensors, gener-
ally at regular intervals, processes the data following a
predefined law, and outputs results to the environment via
the actuators. Debugging real-time software from the
specifications of a given application amounts first to in-
ventoring all the events (interrupt signals) and states
(measures) that express relations between the controlling
system and the environment and second to defining ac-
tions as algorithms in order to ensure the intended control

Manuscript received December 22, 1987; reviscd November 24, 1988.
Recommended by E. Gelenbe.

The authors arc with the Laboratoire d°Automatique dc Nantes, U.A.
au CNRS 823, ENSM 1, Rue de la Noe 44072 Nantes Cedex 03, France.

IEEE Log Number 8930131.

of the environment. These algorithms implemented in
memory of the computer are generally called tasks. Real-
time software then consists of a set of tasks and is char-
acterized by its interactions with external devices and the
timing constraints relating these interactions. Usually,
timing constraints are described in terms of deadlines by
which computations of tasks must absolutely be met or
the system will be considered to have failed. In many sys-
tems, and especially in embedded systems, danger to hu-
man life or simply damage to equipment makes such fail-
ures unacceptable. It follows that the main feature of a
real-time system is to be supplied with a highly efficient
task scheduler whose crucial part is to carefully manage
the access to the processor unit so that all the tasks meet
their timing requirements.

In this paper, we consider a scheduling problem in
which a single processor computing system executes a set
of tasks 3, each of which consists of a periodic sequence
of requests. 3 will be called a periodic task set. More
specifically, a task 7; € 3 demands periodically, every P;
units of time C; units of computation time. We assume
that the requests for each task arrive at the system at the
beginning of request periods and that deadline for com-
pletion of the requested computation in each period co-
incides with the beginning of the next period. Hence, in
our model, a periodic task set will be denoted as follows:
3 = {T(C;, P)), i = 1ton}. In this characterization,
every task 7; makes its first request at time zero. More-
over, some time critical tasks said to be sporadic may ar-
rive at the system and require to be run just once, at any
moment. So, we define a sporadic task set as follows: ‘i
= {Ri(r;, Ci, d;), i = 1 to m}. In this characterization,
task R; is released at time r;, requires C; units of time and
a deadline occurs at d;. So, in any time interval [0, t], a
periodic task set 3 can be likened to one and only one
sporadic task set T where each task R; corresponds to a
particular request that occurs within [0, ¢].

A periodic task set is said to be feasibly scheduled by
a certain algorithm if the computation of each request can
be completed prior to the arrival of the next request of the
same task. Throughout our discussion, we assume that a
preemptive scheduling discipline is employed. Thus, a re-
quest of C; units of computation time can be satisfied by
one or more quanta of time which sum to C;. We will say
that a periodic task set 3 is schedulable if there exists at
least one algorithm that can feasibly schedule 3. For a
schedulable periodic task set that is feasibly scheduled by

0098-5589/89/1000-1261$01.00 © 1989 IEEE

1262

a certain algorithm, it is interesting to determine the par-
ticular time intervals called idle times during which the
processor is not occupied. Idle times can then be re-
covered to process additional tasks.

In this paper, we investigate the problem of estimating
localization and duration of idle times when tasks are
scheduled according to the Earliest Deadline scheduling
algorithm [14], [17]. Under Earliest Deadline, denoted
ED, at each instant of time ¢, higher priority is assigned
to the task whose deadline is closer to . Two implemen-
tations of ED, respectively called EDS and EDL, are pos-
sible such that tasks are processed, respectively, as soon
as possible and as late as possible. We will establish some
specific properties of schedules produced by EDL and
show how we can take advantage of them to achieve the
best use of the computer.

The first illustrative example concerns a real-time sys-
tem in which sporadic tasks may occur at unpredictable
times and be required to be processed before a specified
deadline. Such a system was the subject of studies re-
ported in [15] and [19]. Our results enable us to conclude
that a measure of the maximum quantity of processor idle
time, available for processing a sporadic task can be ob-
tained in assuming that periodic tasks are processed ac-
cording to EDL from the arrival time of the sporadic task.
Note that in practice all the tasks, periodic and sporadic
ones, are always scheduled together according to EDS.
We are interested in using EDL only to simulate a sched-
ule and to derive a measure required for deciding whether
the task can be accepted. For this method to work, we
propose an acceptance condition that can be easily tested
in line whenever a sporadic task occurs and enables us to
guarantee a feasible execution for it, each time it is pos-
sible.

The second example is relative to a fault tolerant sys-
tem which uses the Deadline mechanism [2], {7], [18].
Under this mechanism, two independent algorithms re-
spectively called primary and alternate are provided for
each task and in any request, either the primary or the
alternate must run completely. Moreover, we mean to use
the Last Chance strategy under which the alternate is
scheduled after the primary. So, we show that applying
EDL to alternates results in a maximum available time for
processing primaries and enables us to dynamically reor-
ganize the schedule in an efficient manner whenever a pri-
mary succeeds.

The paper is organized as follows. The next section in-
troduces new terminologies and recalls some background
material. In Sections III and 1V, we state some properties
about schedules produced by EDS and EDL. Section V
shows how these results can be used to provide an effi-
cient solution to some specific problems. The paper con-
cludes with a summary in Section VI.

II. TERMINOLOGY AND BACKGROUND

In a given schedule, if at some time ¢ there is no rcady
task to be run, we refer to the time span between the com-
pletion of the last task to be processed before ¢ and the

1EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 10. OCTOBER 1989

first task to be processed after ¢, as an idle time. In order
to compare idle time length in schedules produced by dif-
ferent scheduling algorithms for a given task set, we de-
fine the availability function f¥(¢) to be

1 if the processor is idle at ¢

X =
fi(t) = {0 else.

S¥(t) is defined with respect to a task set ¥, scheduled
according to the scheduling algorithm X in the time inter-
val [0, t]. So, for any instants t; and r,, the integral

2 £5(¢) dr gives the total units of time that the processor
is idle in the time interval [1,, 1,]. We shall use ¥ (#,. 1,)
to denote this quantity.

A number of authors have studied the problem of de-
vising algorithms for scheduling time critical tasks on a
single processor computing system (see [1] and [6] for
surveys). It was shown in [10], [14], and [17] that ED is
optimal in the sense that all schedulable task sets can be
feasibly scheduled by it. Performance evaluation of ED
does not take into account the overheads originating from
the task preemption. Furthermore, it supposes that there
is no resource conflict between the concurrently executing
tasks. This algorithm which is preemptive will feasibly
schedule a periodic task set as long as its utilization factor
U verifies:

- C
UstwithlU= 2 =
i=\ P
The fundamental property of the schedule produced by
any preemptive algorithm and in consequence by ED, for
a periodic task set is its cyclicity [12). Let P = LCM(P,,
Py, + ++, P,) the base period be equal to the least com-
mon multiple of the periods P,, P,, - -+, P,. Let us as-
sume J is feasibly scheduled according to ED. This prop-
erty means that the processor does exactly the same thing
attimer = Qthatitdoesattimet + kP(k=1,2,---).
So, studying the form of the schedule produced over an
infinite length by ED amounts to studying the form of the
schedule on the intervals [P, (k + 1)P), k =0, 1, 2,
-+, each of them being called a window.
It comes that, for any instant r we have

() = fE2(+kP), k=1,2,---. (1)

So, the schedule produced by ED for 3 over an infinite
time period can be considered as a time rigid one in the
sense that all the requests of any task are started at a pre-
determined absolute global point in time. It comes that
the remaining processor idle time, possibly required to
process additional tasks is perfectly known thanks ta
function f£P(r) over the time interval {0, P] and conse-
quently over any window.

The most common way for implementing ED consists
in ordering all ready tasks by increasing deadline (ties are
broken arbitrarily) and executing them as soon as possi-
ble. ED is obviously an on line algorithm since it solely
requires timing characteristics of tasks that are ready at
any current time. Such implementation of ED will be
called earliest deadline as soon as possible and will be

Reproduced with permission of copyright owner. Further reproduction prohibited.

CHETTO AND CHETTO: EARLIEST DEADLINE SCHEDULING ALGORITHM

denoted EDS. By opposition, we may imagine an imple-
mentation of ED that amounts to executing tasks as late
as possible. For this case, we will show in Section IV that
determination of the start time for any request requires
preliminary construction of the schedule within {0, P].
This makes ED of an off line algorithm that will be called
earliest deadline as late as possible and will be denoted
EDL.

In the following sections, we will deduce some prop-
erties about functions 5P and fEPL and show why these
properties are fundamental, especially when attempting to
solve specific problems as these previously evoked in Sec-

tion 1.

III. MAIN RESULTS

In this section, we will prove three fundamental theo-
rems which will be needed in our later discussion. Our
goa! is to deduce timing characteristics about schedules
produced respectively by EDS and EDL for any sporadic
task set and then, for any periodic task set.

In what follows 3 and "I, respectively, denote a peri-
odic task set and a sporadic task set as defined in Section
1. Let D denote the greatest deadline of sporadic tasks.

Theorem 1: Let X be any preemptive scheduling algo-
rithm. For any instant ¢ such that ¢t < D,

x*%(0, 1) = 07(0. 1). (2)

Proof: We proceed to prove Theorem | by contra-
diction. We assume that there exists some algorithm X for
~ which (2) does not hold. Let 7 be the earliest time such
that

> (0, 1) = 7(0, 1) (3)

and for any time
t > 7, 9595(0, 1) > 9¥(0, 1). (4)

From (3) and (4) it follows that for any length A and in
particular A — 0O,

BE5S(7, 7 + A) > 0¥ (7, 7 + A). (s)

During the interval [0, 7], T has received an identical
number of computation times by EDS and X because of
(3). At time 7, two situations are possible:

¢ there is no ready task to be processed. Obviously, it
follows that QE°5(7, 7 + A) = Qf (7, 7 + A) = A, in
contradiction to (5).

e there is at least one ready task to be processed. As
tasks are processed as soon as possible according to EDS,
this means that the processor is working from rup to 7 +
A and so, Q5%5(7, 7 + A) < Q¥(r, r + A) in contradic-
tion to (5). O

Theorem 2: Let X be any preemptive scheduling algo-
rithm. For any instant ¢ such that 1 < D,

QEPL(0, 1) = 9X(0, 0). (6)

Proof: We assume that there exists some preemptive
algorithm X for which (6) does not hold. Let 7 be the

1263

latest time such that
(0, 1) = ¥(0, 1)
and for any time
t < 1, QEPL(0, 1) < 00, 1). (8)

From (7) and (8), it follows that, for any length A and in
particular A = 0,

QP (r — A, 1) < QF (7 - A, 7).

(7)

(9)

During the interval [0, 7], 7 has received an identical
number of computation times by EDL and X because of
(7). At time 7, two situations are possible:

¢ there is no ready task to be processed. Obviously it
follows that QEPL(7 — A, 7) = Q¥(7 — A, 7) = 4, in
contradiction to (9).

¢ there is at least one ready task to be processed. As
tasks are processed as late as possible according to EDL,
this means that the processor is working from 7 down to
r — A and so, ﬂ$m“(r — A, 7) = 0, in contradiction to
9). |

For the purpose of stating the following theorem, we
introduce a new sporadic task set defined from T as fol-

lows: T' = {R/(r], C/,d),j = 1tom} such that, for
each task R/ we have r; = D — d;,dj = D — r;and (}
= C..

i
Theorem 3: For any instant f such that ¢ < D,
SPH(D — 1) = f75(). (10)

Proof: The theorem is proved by contradiction. Let
7 be the earliest time such that fE°L(D — 1) % fEPS(r)
and for any time ¢ in [0, 7[, (10) holds. Assume that

JfHD - 1) =1 (11)
and

fi5(r) =o. (12)

Equation (12) means that, at time 7, the processor is
passive. As tasks are processed as soon as possible, it is
clear that all the tasks in "’ released before 7 have been
processed completely at time r. So, within [0, 7[the pro-
cessor has been occupied during L;., ., C; units of time
or L,y ~p-, C/ units of time.

Equation (11) means that, at time D — 7, there exists
at least one ready task R; being executed and that neces-
sarily verifiesr; < D — randd; > D — 7.

From (10) and linearity of the integral, it follows that.
for any length A with A < 7

-

-4 A
|, Po-na={ mwa

which implies
(D - 7 + A, D) = GEPS(0, 7 - A).
(13)

Reproduced with permission of copuyright owner.

1264

In particular, if A — 0, from (12) and (13) it follows that

QLD -7 -4,D)=71- M)ZEM G

This means that, within }D —~ 7, D] the processor was
occupied during L;.45 p -, C; units of time. This quantity
corresponds to the total computation time required by all
the tasks that may be processed within 1D — 7, D], i.e.,
tasks R; that verify d; > D — 7. As tasks are processed
as late as possible, this means that, at time D — 7, no
such task has already started execution and so (11) cannot
hold. 0

Example: Let T = {R,(4, 2.5, 9), R;(2.5, 2, 11.5),
R;(0, 3, 7.5)}, so D = 11.5. It follows that T' is de-
duced from T as follows: T’ = {R{(2.5, 2.5, 7.5), R
(0, 2, 9), R;(4, 3, 11.5)}. The result of Theorem 3 is
illustrated in Figs. 1 and 2.

Corollary 1: Let X be any preemptive algorithm and J
be a periodic task set. For any instant such that 7 < P,
we have:

1) G550, 1) < 9(0, 1)
2) 95°1(0, 1) = 9(0,
3) f5°(P - 1) = f55).
Proof: Every periodic task T;(C;, P;) in J can be

modeled by the set of its requests that arrive within [0,
P[. Let ®; be this set and defined as follows:

®; = {Rj(r;, G, dj)/ry = kP, d; = (k + 1)P;,

G=GC, k=01--.,n-1
. P
with n,=;{}.

Clearly, it follows that the periodic task set 3 can be lik-
enned to a sporadic task set i, defined as follows:

Let m = L., n; and be the number of sporadic tasks in
T. We note that

max {4} =P and min {r} =0.

1<j<m l<j=m

So, scheduling 3 by EDS over an infinite time period
amounts to scheduling T by EDS over each window

[kP, (k + DYP[, k=0,1,2,---.

Let 1’ be the sporadic task set associated to # and de-
fined as it was previously. It follows that -

= R, G)/ = (= k= DP;,
dj' = (n - k)P, G = G

k=0,1,--,m=1, i=1,2,-"

Cn}.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 10, OCTOBER 1989

R AN _\%

N 4 4 ooy

R:f 7 ooy ¥ %

! 4
EDL S— - | .
770 25 % 9 95 N5
Fig. 1. Schedule produced by EDL on .

Ry ARY\\\ < N . 4 ¥

R5 f2 * | SNARNANANRNN] % {
o - —
T % 5 ¢ 8.5 TEIN

Fig. 2. Schedule produced by EDSon '.

Letk' =n, —k —1.8Since0 < k < n; — 1, we have 0
< k' < n; — 1and 7’ can be defined as follows:

T =R, G) = kP df = (K + P
C=C, k=01, ++,nm—1,
i=1,2,++,n}.

It is clear that
=T (14)

According to the previous theorems and from (14), proof
of Corollary 1 becomes immediate.

IV. IDLE TIME DETERMINATION

In this section, we investigate the problem of estimat-
ing localization and duration of idle times within a sched-
ule respectively produced by EDS and EDL for 3, over
the time interval [0, P] and consequently over any win-
dow [kP, (k' +)PLLk=1,2,"+".

A. Schedule Produced by EDS

Our goal here is to provide a simple way for determin-
ing localization and duration of idle times in any window
of a schedule produced by EDS.

LetE={rir=kP,0<ks=sn,i=12,-",n}
We construct a row vector & called arrival time vector,
from the distinct elements of E. & = (ey, ¢y, **° , €,
€i+1, "t e) withe, < €.y, ¢ =0ande, = P. We
note that p <= N — n + 1 where N denotes the total num-
ber of distinct requests that occur within [0, P[. In [3], it
was proved that, if an idle time exists, it precedes im-
mediately an instant of &.

So, let us evaluate for each time ¢;, 1 < i < p, the
length of its idle time, denoted A; and possibly equal to
zero. By convention Ag = 0.

Within any time interval [0, ¢;[, i = 1 to p, any task
T; is released [e;/P;7] times where [X] denotes the
smallest integer greater than or equal to X. So, if all tasks
T; have completed before ¢;, it follows that

EDS - . &~
2:°°(0, ¢) = ¢, j§| [Pj] of

Further reproduction prohibited.

CHETTO AND CHETTO: EARLIEST DEADLINE SCHEDULING ALGORITHM

and consequently
" i-1
=e - 3 |%lc - - =
4; =g j§l [P,] & k§ A clse 4; = 0.
In the general case, the length of the idle time that pre-
cedes any arrival time ¢; is given by the following for-
mulas:

Ay =0
n i—1
q _
A; = sup <O. e — E:l {E]Cj k2=:| Ak)
i=1,2+,p. (15)

Now, the availability function f5°° is entirely defined

by vector & of distinct arrival times within [0, P[and by
the associated vector D called idle time vector. D = (4,,
4y, © - -, 4,) where 4; is the length of the idle time that
precedes ¢;, with a length possibly equal to zero.

From definition of D, it follows that Zf'.; A; = & where
¢ denotes the quantity of processor idle time within any
window and is given by the following formula:

®=P(1 - U). (16)

Since fEP8 is cyclic with period P, © and § also define
555 for any window. We note that description of the
schedule over an infinite time is achieved in O(N) oper-
ations which makes of this method an efficient one. We
will show in Section V how it can be applied to the de-
cision problem that arises when an additional time critical
task arrives and is required to be run.

B. Schedule Produced by EDL

Let & be defined as previously. Under EDS, any idle
time within [0, P] is situated just before a time that be-
longs to &. From Corollary 1, it follows that any idle time
in a schedule produced by EDL is situated just after such
a time.

Let us evaluate for each time ¢;, i = 0 to p the length
of idle time denoted A¥ that directly follows ¢;. By con-
vention A7 = 0.

Within any interval [e;, P] with 0 < i < p, every task
Tjis released [P — ¢;/P;7] times. If all the ready tasks
have completed their execution within [¢;, P], the total
idle time within [e;, P]is (P — ¢) — L/, [P —
e;/P;] C;. As the total idle time in [e;, , P} is given by
Tf-i41 AY, it follows that

Ar=(r—e.-)—i[”;j”’

P

G- X Al

k=i+1

Else A¥ = 0.

So, in the general case, the length of the idle time that
follows any arrival time ¢; is given by the following for-
mulas:

Ay =0
n - . 14
A}“=sup<0,P—e,— 2 [P e']C}‘- 3 Ai")

j=1 1] k=i+1

i=0,1, "+ ,p—1 (17)

1265
i 0 1 2 3 4 b 6
e 0 45 6 9 12 135 18
4 0 0 05 1 05 0 3
o 3 0 05 1 05 0 0
Fig. 3. Idle times under EDS and EDL.
L k\‘l kﬂ lm
7, | ESSSSIT ESSSSIS) ke
T SR | O\
95 43 336 s 9 ns 12 15 18 ¢
caocution of T; B ik tme
Fig. 4. Schedule produced by EDS for 3.
T il = ool
1, Jasaaann| s IANANNN
LA | S
% = R - - |
;1%0 0 3 45 665 9 10 12125 LY
cxccution of T, Wl cidiclime
Fig. 5. Schedule produced by EDL for 3.
Now, let the idle time vector (Ag, Af, - < -, A;) be de-

noted by D*.

C. lllustration

Let 3 = {T\(1,4.5), (2, 6), T;(1.5,9)}. Jisa
schedulable periodic task set since U = 0.722. From con-
struction of € and thanks to formulas given previously,
we deduce the length of any idle time within [0, P] where
P = 18 for the schedules respectively produced by EDS
and EDL (see Fig. 3).

We note that L., A; = & where & = 5 and is given by
(16). Besides, equality f5PL(P — 1) = f5%5(t) is ex-
pressed in the figure by symmetry, e.g., A¥ = A,_;. Re-
sults described in Fig. 3 are easily verifiable by construct-
ing the schedules, produced by EDS (see Fig. 4) and EDL
(see Fig. 5), respectively.

V. APPLICATIONS
A. Acceptance of Sporadic Tasks

In real-time applications such as industrial process con-
trol, the computing system connected to the process is
required to execute tasks in response to external signals
and to guarantee that each such task will be completely
processed before a specified deadline. In such a context
and under normal functioning, software consists of a set
of tasks that accept data and output set points to the con-
trol object via the actuators. Value of the task period then
depends on the dynamics of the physical process it con-
trols. Furthermore, in abnormal or critical situations such
as a perturbation in the control object, sporadic tasks can
be invoked. These additional tasks are also time critical
tasks which occur at unpredictable times [15], [19].

In this section we shall be concerned with the algorithm
which, given any occurring sporadic task R is capable of
answering the question ‘‘Can R be accepted?.’" Notice

Reproduced with permission of copyright owner.

1266

~ that R will be accepted if and only if there exists a valid
schedule, i.e., a schedule in which R will execute by its
deadline and periodic tasks will still meet their deadlines.
We assume that, when any sporadic task arrives in the
system and is required to be run, all the sporadic tasks
previously accepted have completed their execution.

The question of the acceptance of a new task amounts
to the question of the existence of a valid schedule. The
answer then depends on timing parameters of all the tasks
running on the intended machine such as computation
times and deadlines. Besides these parameters, the sched-
uling strategy, i.e., the strategy of assigning the processor
to the tasks and the amount of system overhead also affect
the possibility of deadline missing and consequently the
possibility of rejecting the new occurring task. In what
follows, we propose a test able to answer ‘‘yes’” to the
question of the acceptance of a newly occurring task, each
time it is possible. This means that any task rejected by
this test would be rejected by any other test. The approach
is based on the assumption that tasks are executed ac-
cording to the optimal prcemptive scheduling algorithm
EDS.

Let 7 be the current time which coincides with the ar-
rival of a sporadic task R; upon arrival, task R is charac-
terized by its release time r, its execution time C and its
deadline d with r + C < d. Here, we assume that any
occurring task is ready to be processed as soon as it ar-
rives. Consequently, r = r. At the current time 7, the
dynamic workload inflicted fo the machine results from
requests of periodic tasks. We can distinguish between
current requests which have occurred at or before 7 and
have not completed at 7, and future requests which have
not already started their execution at 7. Each of them cor-
responds to a pair of values of j and k such that either kP,
s 7 < (k+ 1)PjorkP; > 7 with k > 0. The pair (j,
k) refers to the kth computation of the periodic task T;.
Each periodic task 7; is characterized by its static param-
eters C; and P;, by its dynamic execution time C;(7), e.g.,
execution time remaining at time 7 and the deadline d; of
its current request at time 7.

Leta = [d/P] and denote the number of successive
windows that include [7, d]. Let J(7) be the set of pe-
riodic requests that occur within [7, aP]. It is clear that
feasible execution of requests in 3 (7) and only these ones
are possibly affected by the new occurring task. 3(7) can
be considered a sporadic task set where each task (or re-
quest) has a release time equal or posterior to 7. Dynamic
workload inflicted to the processor from 7 is entirely de-
scribed by J3(7) and enables us to ignore processor activ-
ity before time 7 which becomes a new time zero. From
Theorem 2, it is clear that applying EDL to 3(7) will
result in the maximization of total idle time within any
time interval {7, ¢], ¢ = 7, and in particular within [7,
d] It follows that R will be accepted if and only if C <
nﬁ(,) (7, d))

Now, let us derive the value of Q5>5(r, d). For this
purpose, we will need to use /(7) and A () respectively
defined as to the remaining idle time and the total com-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL.

15. NO. 10. OCTOBER 1989

putation time required by sporadic tasks from the begin-
ning of the current window up to 7. We note that

050%5(7, d) = ad — A(7) - I(r) - QEPL(d, aP).

(18)

Computation of Q3;;5(d, aP) is then achieved as follows.

Let 8(7) = {ei(7)/ei(r) =¢; + (a — 1)P with ¢;
£} and let A be the index that verifies e,(7) = max {e;(7)
€ 8(7)/ei(7) < d}. Let A¥(7) denote duration of the
idle time that follows the release time ¢;(r) by applying
EDL to 3(7). By convention, Ay(7) = 0. Let M =
maxz.es(,) {d; }. M denotes the maximum deadline among
those of current requests of periodic tasks. In order to
compute Q5(55(d, aP) efficiently, it is interesting to dis-
tinguish between the two following cases:

1) eithera > lor(a=1landd = M).

2) a=1landd < M.

In the first case, computation times respectively re-
quired by 3 and 3(7) within [d, aP] are identical. It fol-
lows that Q505(d, aP) = QEPL(d, aP). From periodicity

of f; , it follows that
P
05P4(d, aP) = - g: AF e (19)
+
with
€ = sup (0, e + AF — (d - (a — 1)P)).

So this quantity can be easily computed at any current
time if we assume & and D* to be available from the in-
itialization time.

In the second case, the total computation time required
by periodic tasks available within [e;(7), aP] is given by

b oo g2,

P;
di> ei(1)

Define index ! such that ¢,(7) = min {¢;(7)/e;(7) =
M }. We note that for all] < i < p, the total computation
time required by periodic tasks within [e;(7), aP] is given
by

aP - e;(r)] c [P - e,-]
P 7, C; also equal to ,-?. 7, G.
It follows that:
A¥(r) = Ar fori=ltop, (20)

A,’t"(‘r) = sup (0, (P —e¢) - j?l Ci(r)

dj> ei(r)

" [aP — sup (e,-(-r),dj)]
";-Zl[P,
-CJ---I‘Z+ A‘(r)) fori=htwol -1

(21)

Further reproduction prohibited.

CHETTO AND CHETTO: EARLIEST DEADLINE SCHEDULING ALGORITHM

and finally,

4
QEPL(d, aP) = ‘3%1“ A¥(7) + €(7) with (22)

e(7) = sup (0, ¢,(7) + A¥(7) — d).

The procedure that implements the acceptance test will
need to use several data structures. The arrival time vector
€ and the static idle time vector D* are maintained in the
Arrival Time Table (ATT) and the Static Idle time Table
(SIT), respectively. Information on periodic tasks is
maintained in a data structure called the Periodic Task
Table (PTT). Each entry in the PTT contains a period, an
execution time, a dynamic execution time, and a dead-
line. Tasks in PTT are ordered by their deadlines. Dy-
namic values A (7) and /(7), which are reinitialized at the
beginning of every window, must be available for the pro-
cedure described in Fig. 6.

Clearly, this acceptance test runs in O(N) time in the
worst case. This makes the proposed approach an efficient
one in the sense that few overlieads are induced whenever
a sporadic task arrives. Usually, this test was achieved
according to one of the two following approaches:

¢ the approach proposed in {11]. The acceptance prob-
lem is then solved as a network flow problem in 0(N3)
time.

¢ the approach recently proposed in [4] which is an ex-
tension of the work presented in [8]. It consists in testing
feasibility for requests that occur within [7, aP] with
deadline posterior to d. This test runs in O(N?) time.

Complexity of an on line algorithm is an evaluation of
overheads that are produced when this algorithm runs,
e.g., when a sporadic task occurs. So, in a hard real time
context where all the tasks must imperatively meet their
timing requirements, it is of more practical interest to
make use of an algorithm which is both optimal in terms
of scheduling performance and efficient in terms of com-
putational complexity.

B. The Deadline Mechanism

Although carefully designed, every real-time system is
subject to perturbations which result from subtle errors in
software coding or failures due to hardware design defi-
ciencies or malfunctions in input channels. In many sys-
tems and especially in embedded systems, such failures
result in danger to human life or simply damage to equip-
ment which is unacceptable. So, it has become necessary
to design real-time systems that remain feasible, even in
presence of failures, by implementing redundant soft-
ware.

The Deadline mechanism, inspired by the recovery
block scheme [16], allows us to construct a reliable com-
puting system for hard real-time applications [7). Each
task implements on the one hand a program said primary
that produces a good quality service but in an unknown
length of time, due to possible failures and, on the other

1267

Algorithn ACCEPTANCE;
begin
bool:=false;
SOM:=0;
for the last catry j of the PTT
do

M:-dj;
i 2=1 and d<M then bool:=truc <nd if
end do
find the Last cotry & in ATT such that o <d-(a-1)P;
if boot = falsc then
begin
for each entry j from the ontry (h+1) to the last entry of the SIT

00 SOM:=SOM#4; end de

mpnutfmnA;:
SOM:=SOM+c;
od
else
begin
find the first eniry 1in ATT such that q2M;
for cach ontry j from the last eniry down 10 the eniry 1 of the SIT
.
do SOM:&'%OM#Aj ead do

forrchwl:yj(mmtbcem(l-l)dwnm the ety (hel) of the SIT
e

compute A: <)
SOM-SOM&A; ({33
end do.
conpuie &, and (1),
SOM:= SOM+i(1);
end
end if
£l vai=ad- A e SOM
C > Q°DF; (¢0) then rotum (ot accepied)
else rctum Caccepied)
end il

Fig. 6. Outline of the acceptance test.

hand, a program said alternate that produces an accept-
able result in a known and fixed length of time. In such a
system, called a fault-tolerant real-time system, the oc-
currence of erroneous states does not result in timing fail-
ures and so, in any situation allows us to guarantee an
acceptable although degraded performance.

In a controlling system that implements the Deadline
mechanism, the scheduler must ensure that, within an in-
finite period, all the deadlines are met either by primaries
or by alternates but in preference by primaries whenever
it is possible. This goal can be achieved by applying the
Last Chance strategy which runs as follows: the scheduler
in charge of sequencing alternates reserves time intervals
for processing them. For each request, this interval is
chosen so that any alternate starts execution at the latest
time. Primaries are then scheduled in remaining times be-
fore their alternate. Under this strategy, any alternate may
interrupt a running primary at any instant for starting its
execution at the correct time. But, whenever a primary
successfully completes, execution of the altemate of the
same request is no longer necessary. So, the system must
be provided with a dynamic scheduler which reallocates
the time reserved for this alternate so as to increase pro-
cessor availability and consequently the number of pri-
maries executed in the additional idle time.

So, an optimal scheduling algorithm produces a valid
schedule whenever one exists and maximizes processor
idle time 50 that primarics are processed as soon as pos-

sible.

Reproduced with permizsion of copyright owner.

1268

Let 3 = {T:(C;, P;), i = 1ton} be the set of periodic
tasks that run in such a system. For each task 7;, C;, and
P,;, respectively, denote the execution time of the alter-
nate and the period of both alternate and primary. Up to
date, few papers have been devoted to deduce theoretical
performance measures for the deadline mechanism. The
most significant result was obtained by Liestman and
Campbell [13]. They have presented an optimal algorithm
under the following assumptions:

¢ the period of each task is a multiple of the next small-
est period.

¢ the execution times of primaries are known and fixed
at system initialization.

Here, no such assumptions exist. Alternates are sched-
uled according to the Earliest Deadline algorithm and pri-
maries by either preemptive algorithm. At the beginning
of any window and in particular at system initialization
time, the time intervals reserved for processing primaries
in the current window are determined in assuming that
alternates are scheduled according to EDL. From Theo-
rem 2, this method enables us to state that primaries have
a maximum available time for executing as soon as pos-
sible. However, when a primary completes successfully,
a new schedule must be computed in order to recover the
time interval previously affected to its alternate,

Let 7 be the current time and coincide with the suc-
cessful completion of a primary. The scheduling problem
that arises in such system at time 7 consists of reorganiz-
ing the schedule because execution of the associated al-
ternate is no longer required. Such a reorganization is
achieved after removing this alternate and by scheduling
remaining alternates according to EDL from time 7 up to
the end point of the current window. Dynamic construc-
tion of the new schedule at 7 is independent of processor
activity before which can be considered a new time zero.
Theorem 2 then allows us to conclude that the length of
processor idle time (e.g., time available for processing
primaries) in any interval [7, t], ¢+ = 7 is maximized and
consequently the schedule so constructed is optimal.

Let D* (k) denote the dynamic idle time vector which
results from the reorganization of the schedule following
the success of the kth primary at time r. Let d be the
deadline of the current request of this primary and §(7)
be defined as follows: &§(7) = {e;(7)/e;(7) = ¢; + (a
- 1)P} wherea = [d/P]].

By definition, D*(0) = D* and D*(k) = {A} (k) /e
€ &} where A (k) is the length of the idle time that fol-
lows €;(7). By convention AZ(k) = 0. Let k = min
{i/ei(r) = 7} and ! = max {i/e;(r) < d}. For each
T;, let d; be defined as previously and b; be equal to zero
if primary of the current request has succeeded and equal
to one otherwise. For each pair (T}, ¢;), let

g 1
"o

Computation of D* (k) from D*(k — 1) is achieved
efficiently after noting that alternates, which at step (k —

if d’ > e,'(T)

else.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 10. OCTOBER 1989

Algorithm SCHEDULE
begin
anitialize DIT with SIT;
for cach catry j from the Tirst oty 10 the last cawy of Uk ATT
de

while T<¢;,1(3)
do

i 1ec)+ A(K) thew
begin
schodule primarics by cither algorithm,
SUCCES (1) then
begin
find the smallest entry k ia ATT such that ey (t)2t;
find the greaicst caury 1 in ATT such tat e){v)<d;
for each entry i from the entry | down W the entry & of the DIT
do
compute now A”(X);
e de
end
endlt

end
else schedule aliemaxks by EDS;
endil
ead do
end 40

Fig. 7. Outline of the dynamic scheduler.

1) have been scheduled after d, remain identically sched-
uled after d at step k. Then it can be easily stated that:

A} (k) = sup <0, (P - ¢)

().

J

P
G- X A}“(k)) fori = lto 1

Jmi+1
(23)
and
A¥(k) = A¥(k—-1) fori=1+ 1top. (24)

Let ATT, SIT, and PTT be the tables defined as pre-
viously. To the entry j of PTT, is associated the additional
value b;. Let DIT be the Dynamic Idle time Table that is
updated whenever a primary succeeds. The global sched-
uler implements a cyclic algorithm with period P (see Fig.
7). At any time ¢ it amounts to either an alternate sched-
uler or a primary scheduler. To determine invocation times
of the procedure that updates DIT the system uses a bool-
ean function SUCCES defined as follows:

true if time 7 coincides with the
successful completion of
SUCCES (7) = aprimary T
false else.

The main characteristic of this scheduling algorithm lies
in the ability to dynamically specify scheduling intervals
reserved for alternates, taking into account the tun time
situations, e.g., success or failure of primaries. As alter-
nates are always scheduled as late as possible, the adap-
tivity of the proposed strategy makes it an optimal one.
Its use is expected in applications that require high relia-
bility and graceful degradation without needing human in-
tervention. An extension to be suggested consists of pro-
posing a practical implementation of this scheduling
method in distributed systems. Up to date, strategies for
allocating primaries and alternates to the nodes in such a
system have been proposed [9]. However, it remains to
be determined how a distributed scheduler can work.

Further reproductiow prohibited.

Reproduced with permission of copyright ouner.

CHETTO AND CHETTO: EARLIEST DEADLINE SCHEDULING ALGORITHM

V1. SuMMARY

One of the most important steps in designing a real time
computer system is to supply it with an efficient task
scheduler. In a real-time context, efficiency is essential
both for achieving the best use of the computer and for
adhering with severe timing constraints relating to task
executions.

One could think that preemptive scheduling is less suit-
able than nonpreemptive scheduling, whose implementa-
tion is simple and involves little overhead. However, the
problem of determining a nonpreemptive optimal sched-
ule is known to be NP-hard.

So, our aim was to bring to light new ideas about
preemptive scheduling applied to a set of periodic tasks
that run on a monoprocessor machine. More precisely,
statements and proofs of fundamental properties about the
schedule produced by the optimal Earliest Deadline al-
gorithm were given. :

Objectives of our theoretical investigations were to im-
prove system performance and reliability in providing ef-
ficient solutions to various practical problems as de-
scribed in Section V of this paper. Although we confined
our attention to scheduling independent tasks on a mon-
oprocessor machine, we believe that an extension of the
model will make it more accurately reflect real-time pro-
gramming. So, our plan for the future is to encompass a
similar theoretical study for a multiple processor system
by taking into consideration precedence and resource con-
straints.

REFERENCES

[1] J. Blazewicz, **Deadline scheduling of tasks—A survey.”* Founda-
tion Contr. Eng., pp. 203-216, 1977.

12} R. H. Campbell. K. H. Horton, and G. G. Belford, **Simulation of
a fault-tolerant deadline mechanism.'" in Proc. FTCS-9. 1979. pp.
95-101.

13} H. Chetto and M. Chetto, **On the acceptation of non-periodic time
critical tasks in distributed systems,'” in Proc. 7th IFAC Workshop
Distributed Computer Control Svstems (DCCS-86), Maychoss, West
Germany, Oct. 30-Sept. 2, 1986.

[4] —, **How to insure feasibility in a distributed system for real time
control,”” in High Performance Computer Systems, E. Gelenbe, Eds.
Amsterdam, The Netherlands: North-Holland.

{51 M. R. Garey and D. S. Jonhson, Computers and Intractability. A
Guide to the Theory of NP-Completeness. San Francisco, CA: Free-
man, 1979.

{61 M. J. Gonzalez, Jr.. **Deterministic processor scheduling,'* ACM
Comput. Surveys. vol. 9, no. 3. pp. 173-203, Scpt. 1977.

[7] H. Hecht, *‘Fault tolerant software tor real-time applications.”” ACM
Comput. Surveys. vol, 8. no. 4, pp. 391-407, 1976.)
|8} W. Horn. **Some simple scheduling algorithms.'* Naval Res. Logist.

Quart, vol. 21, pp. 177-185, 1974,

9] C. M. Krishna and K. G. Shin. "*On scheduling tasks with a quick
recovery from failure,” TEEE Trans. Comput., vol. C-35, no. S, pp.
448-455. May 1986.

10} J. Labetoulle. **Some theorems on real time scheduting.” in Com-
puter Architectures and Networks. E. Gelenbe and R. Mahl, Eds.
Amsterdam, The Netherlands: North-Holland, pp. 285-298.

1269

[11] E. L. Lawler and C. U. Martel, *‘Scheduling periodically occurring
tasks on multiple processors,'* Inform. Processing Lett.. vol. 12, no.
1. pp. 9-12, Feb. 1981.

[12] 3. Y. T. Leung and M. L. Merril. **A note on precmptive scheduling
of periodic real-time tasks,”” Inform. Processing Lett.. vob. 20, no.
3, pp. 115-118, 1980.

|13] A, L. Liestman and R. H. Campbell, A fault-tolerant scheduling
problem."* IEEE Trans. Software Eng.. vol. SE-12, no. 11, pp. 1089-
1095. Nov. 1986.

[14] C. L. Liu and J. W. Layland, "*Scheduling algorithms for multipro-
gramming in a hard real-time environment,”* J. ACM, vol. 20, no. 1.
pp. 46-61. 1973,

1151 K. Ramanritham and J. Stankovic. **Dynamic task scheduling in hard
real-time distributed systems,"* JEEE Software. vol. 1. no. 3, pp. 65-
75. July 1984,

{16] B. Randell, P. A. Lec, and P. C. Treleaven. **Reliability issues in
computing system design.”” ACM Comput. Survevs. vol. 10, no. 2,
pp. 123-165, 1978.

[17] O. Serlin, **Scheduling of time critical processes.™ in Proc. Spring
Joint Computer Conf.. 1972, pp. 925-932.

[18] A. Y. Wei, K. Hiraishi, R. Cheng, and R. H. Campbell, ‘*Applica-
tion of the fault-tolerant deadline mechanism to a satellite on-board
computer system,"” in Proc. FTCS-10, 1980, pp. 107-109.

1191 W. Zhao and K. Ramamritham. **Distributed scheduling using bid-
ding and focussed addressing.”” in Proc. Real-Time Systiems Symp..
San Diego, CA, Dec. 3-6, 1985, pp. 112-122.

Houssine Chetto was born in Berkane, Morocco.
on December 15, 1952. He received the Maitrise
d’Electronique, Electrotechnique et Automatique
from the University of Orléans, France. in 1978
and the degree of Docteur de 3eme cycle in con-
trol engineering from the University of Nantes.
France, in 1981.
" s Between 1981 and (985, he was an Assistant
. . Professor in the Department of Physics of the
D ,& University of F&s, Morocco. From October 1985
to September 1988, he has been employed by
Ecolc Nationale Supéricure de Mécanique de Nantes as an Assistant Pro-
fessor in the Depariment of Automatic Control. He is presently an Assistant
Professor in the Department of Production Management. Institut Uni-
versitaire de Technologie, Nantes. Since 1979. he has been working with
the Laboratoire d’Automatique de Nantes. His fields of interest are con-
current computing, fault-tolerance, and scheduling. with a particular focus
on real-time systems,

Maryline Chetto was born in Iiliers, France, on
December 18, 1959. She received the Maitrise de
Sciences et Techniques in electrical engineering
and the degree of Docteur de 3&¢me cycle in con-
trol engineering from the University of Nantes.
France, in 1981 and 1984, respectively.

From October 1984 to December 1985, she
held the position of Assistant Professor of Com-
puter Science at the University of Rennes, while
her research was with the Institut de Recherche en
Informatique et Systémes Aléatoires, Rennes. In
1986, she joined the University of Nantes and is currently an Assistant
Professor with the Institut de Recherche et d'Enseignement Supérieur aux
Techniques de I'Electronique. From 1982 to 1984 and since 1986, she has
been working at the Laboratoire d*Automatique de Nantes. Her research
interests include scheduling, software fault-tolerance, and real-time oper-
ating systems.

Further reproduction prohibited.

