

Computer Control:

Task Synchronisation in Dynamic Priority Scheduling

Sérgio Adriano Fernandes Lopes
Department of Industrial Electronics

Engineering School
University of Minho
Campus de Azurém

4800 Guimarães - PORTUGAL
email: sfl@dei.uminho.pt

António José Pessoa de Magalhães
SAIC - DEMEGI

Faculty of Engineering
University of Porto

Rua dos Bragas
4050 Porto - PORTUGAL

email: apmag@fe.up.pt

Abstract
Due to common resource protection, most real-time tasks have non-preemptive sections. Such
sections, called critical sections, rise several problems to real-time scheduling theory. Namely,
deadlock avoidance and bounded blocking time. Different and widely mentioned solutions exist for
this problem in the context of fixed priority scheduling. However, solutions for the same problem
but in the context of totally dynamic scheduling, although much more interesting, are seldom
referred in the current literature. This paper surveys those solutions and illustrates their
philosophies, providing thus a considerable help for real-time systems designers who develop or
intent to develop their applications upon EDF or other totally dynamic scheduling algorithm.

Keywords: Discrete Digital Control Systems, Computer Control, Real-Time Scheduling and Task
Synchronization.

1 Introduction
Real-time systems are those that must perform correctly not only the value but also in the time domain. Computer
controllers are probably the most known real-time systems. This is because a controller must obey to some time
constraint in sensing the environment and perform control actions accordingly. There are many areas of
investigation in real-time systems. One of the most interesting and challenging is the scheduling theory. This is
particularly true when tasks have to synchronise their executions.

The dynamic scheduling algorithms are known for a long time. Liu and Layland [1] showed that Rate Monotonic
(RM) and Earliest Deadline First (EDF) are optimal for fixed and dynamic priority systems, respectively.
Unfortunately, Liu and Layland conclusions only apply for independent tasks. Yet, in a multi-tasking control
system, tasks are likely to share data or some physical or logical device that cannot be arbitrarily accessed. Tasks
that perform in this way are said to be dependent, in the sense that tasks execution depend on each other. In this
scenario, the system must provide some protection mechanism around shared resources. Otherwise, resource
corruption will occur due to tasks' concurrent accesses to shared resources. Synchronisation mechanisms (like
semaphores, monitors, etc.) can protect shared resources. However, they define critical sections in the tasks'
code. That is, tasks have portions of code that are non-preemptive, from the point of view of a task that intents to
enter an already accessed resource.

Synchronisation poses serious problems in dynamic scheduling. Dependent tasks may easily miss their deadlines.
Such scenarios are totally unacceptable in a hard real-time environment. Yet, finding the optimal scheduling in a
preemptive system with resource sharing is known to be an NP-hard problem[2]. However, dynamic priority
schemes are much advantageous: namely, they provide good processor efficiency. Therefore, a considerable
research effort has been done is the context of dependent tasks dynamic scheduling, and solutions have been
found. Unfortunately, those solutions do not seem to have had much echo on real-time systems designers. This is
probably because such solutions are very dispersed in the current literature and no survey seems to exist.

This paper surveys and illustrates three solutions for the dynamic scheduling of dependent tasks. A special
emphasis is placed on the EDF algorithm. By doing this, the paper collects the most common solutions to the
stated problem and present them in an organised way. Section 2 describes the problem and the solutions that can

2 S. F. LOPES AND A. P. MAGALHÃES

solve it in fixed priority systems. Sections 3, 4 and 5, survey three synchronisation algorithms for dynamic
priority scheduling. Namely Dynamic PCP, Stack Resource Protocol (SRP) and Interruptible Critical Sections
(ICS), respectively. Section 6 summarises the most important conclusions.

2 Synchronisation Problems and Fixed Priority Solutions
The two major problems that arise in dynamic scheduling systems are multiple priority inversion and deadlock.
Priority inversion happens when a high priority task has to wait for a lower priority task to release a shared
resource. Figure 1 shows an example of multiple priority inversion. In here, a intermediate priority task τ2
preempts a lower priority task τ3 during the blocking of the higher priory task τ1 by τ3 . The up arrows denote
tasks' execution request times and the down ones denote tasks' execution completion times.

2 6 71 5t 43t t t t t t

1

2

3

τ

τ

τ

Time

Critical section that
protects resource 1

Critical section that
protects resource 2

Figure 1 - Priority Inversion Example.

The deadlock problem happens when at least two tasks block simultaneously waiting for any other to release a
shared resource. This scenario is illustrated in Figure 2 by τ2 and τ3 , while τ1 (not sharing any resource with any
of the other tasks) is normally executed.

t
4
t
5 6

t t
721

tt

1

2

3

τ

τ

τ

t
3

Critical section that
protects resource 1

Critical section that
protects resource 2

Critical section that
protects resource 3

Time

Deadlock

Figure 2 - Deadlock Example.

Two solutions for these problems are presented by Sha, Rajkumar and Lehoczky [3] in the context of fixed
priority scheduling, if critical sections are protected by binary semaphores. These are the Priority Inheritance
Protocol (PIP) and the Priority Ceiling Protocol (PCP). The former states that when a lower priority task
executing a critical section blocks a higher priority task, it transitively abandons its actual priority and inherits the
priority of the blocked task. The latter defines a priority ceiling for each semaphore, and states that a task can
only enter a critical section if its actual priority is higher than the priority of all semaphores' ceilings currently
locked by other tasks. The priority ceiling of each semaphore equals the priority of the highest priority task that
can use it. By using PCP, both multiple priority inversion and deadlock are prevented. Furthermore, chained
blocking is also avoided.

Whist the PCP is not directly applied to dynamic priority scheduling, it is a good point of departure. Moreover, it
can be easily adapted to totally dynamic scheduling as it will be shown in the next section.

3 Dynamic PCP
The Dynamic PCP, firstly presented by Chen and Lin [4], is an extension of PCP to dynamic priority scheduling.
It assumes that a task priority is given by the deadline of its current execution if it is pending; or by the deadline
of its next execution, otherwise. Since tasks priorities change with time, so do the priority ceilings of the
semaphores controlling the access to shared resources.

In priority dynamic algorithms we need to distinguish between a task's priority and the priority of its executions.
The former, called original priority and denoted p(t), depends only on the deadlines of its sequence of
executions. The latter, called augmented priority and denoted p*(t), depends also on the priority inheritance
mechanism.

The Dynamic PCP is given by two rules:

TASK SYNCHRONISATION IN DYNAMIC PRIORITY SCHEDULING 3

At instant t, the priority ceiling of a semaphore S, c(t), is the original priority of the highest
priority task τH that locks, or may lock, S at time t or later. That is, c(t) = pH(t).

When the execution of a task τ tries to lock S, it gets the lock if p*(t) > cH(t), where SH is
the semaphore with highest priority ceiling among all the semaphores locked by others
executions at that time. Otherwise, the task's execution is suspended, and the execution of
task τL , which currently locks SH , inherits p*(t) until it frees SH .

This solution, besides solving the problems previously discussed, possesses an interesting property: if a task is
blocked, that will occur in its first critical section. Therefore, the lock condition only needs to be verified for the
first semaphore lock of each task. Figure 3 shows how this algorithm applies (d(ti) denotes the priority associated
with a deadline at instant ti , according to EDF).

t3 t t5 t62tt1t0 4 t t t7 8 9

τ

τ

τ1

2

3

Time

Critical section protected
by semaphore

Critical section protected
by semaphore

Critical section protected
by semaphore

S

S

2

3

S
1

t0 : p1= p1
*= d(t7), p2= p2

*= d(t8) and p3= p3
*= d(t9). c1= d(t7), c2= d(t8) and c3= d(t8).

t1 : p p2 3
* *> .

t2 : p c2 3
* /> , p3

*= p2
*= d(t8).

t3 : p3
*= P3= d(t9). p2

*= d(t8) > p3
*= d(t9).

t4 : p1
*= d(t7) > p2

*= d(t8), p1
*> c2 .

t5 : p1= d(t7+T1), c1= d(t7+T1).
t6 : p2= d(t8+T2), c2= c3= d(t8+T2). p3= d(t9+T3).

Figure 3 - Deadlock Prevention with Dynamic PCP.

Chen and Lin show that applying Dynamic PCP synchronisation, a set of n periodic tasks are schedulable by the
EDF if

 C B
T

i i

ii

n +
≤

=
∑

1

1, (1)

where, Ci denotes maximum execution time, Ti is the period and Bi is the priority inversion bound, of task ti .

4 Stack Resource Policy
Baker [5] presents another solution that extends the PCP in three very useful ways:

• multi-unit resources – allowing other more general resource protection then simple binary semaphores
do;

• support for various scheduling policies – EDF, RM, Deadline Monotonic and combinations of those;

• runtime stack sharing – resulting in memory savings, so important in real-time systems.

Besides its priority, each task τi has also an associated fixed preemption level πi . A task τi may only preempt
another task τj if πi > πj . The preemption levels must be defined in such a way that the priority concept is not
violated (see Baker [5]). One possible definition is ordering them inversely with respect to the relative deadlines.

Each resource Rr has a preemption ceiling, cr(vr), that depends on the number of units currently available of that
resource. The definition is:

cr(vr) is the maximum between zero end the preemption levels of all the tasks' executions
that may be blocked when there are vr units of Rr available.

Denoting by µr(τi), the maximum needs in units of a resource Rr by a task τi , the previous definition can be
stated more formally:

 cr(vr) = max ({0} ∪ {πi : vr<µr(τi)}). (2)

4 S. F. LOPES AND A. P. MAGALHÃES

For simplicity, it is also convenient to define a global ceiling of the system π :

 π = max (cr : r =1,...,m}, (3)

where m is the number of resources.

Now is then possible to define the SRP: the request for execution of a task τi , is blocked until πi>π .

Figure 4 exemplifies the application of this synchronisation algorithm in the context of the EDF. Three tasks τ1 ,
τ2 and τ3 and three resources R1 , R2 and R3 are considered. The tasks' preemption levels are π1= 3, π2= 2 and
π3= 1. The number of units of each resource are NR1= 3, NR2= 1 and NR3= 3. Finally, the maximum needs of
each resource by each tasks are given in Table 1. According to these parameters, preemption ceilings of each
resource for each number of available units are given in Table 2.

Rr µr (τ1) µr (τ2) µr (τ3)

R1 1 2 3
R2 0 1 1
R3 1 3 1

Table 1 - Maximum resource needs of the tasks represented in Figure 4.

Rr cr (0) cr (1) cr (2) cr (3)

R1 3 2 1 0
R2 2 0 0 0
R3 3 2 2 0

Table 2 - Preemption ceilings for the tasks represented in Figure 4.

1

2

3

π

tttt1 t2 3 4 5

1 1

31

τ

τ

τ

π
π2π

1 = 3

= 1
= 2

03

i

i

i

Time

1R

2R

R3

Allocation of i units
of resource

Allocation of i units
of resource

Allocation of i units
of resource

t0: c1(3) = 0, c2(1) = 0 , c3(3) = 0 and, therefore, π = 0.
t1: (τ3 , R2 , 1), π = c2(0) = 2.
t2: π2 /> π .
t3: c2(1) = 0, (τ3 , R1 , 3), π = c1(0) = 3.
t4: π1 /> π .
t5: π = c1(3) = 0, π1>π .

Figure 4 - SRP Example.

Baker also proves that a set of n tasks (periodic and aperiodic), with relative deadlines equal to the period
(Di=Ti), is schedulable by the EDF if

 ∀ + ≤
= =

∑k C
T

B
Tk n

i

ii

k
k

k1 1
1

,...,
: . (4)

It is worth noticing that this result is better than the one provided by the Dynamic PCP (compare with equation
1), in the senses that there is only one blocking term in the sum. Also worth noting is that the runtime stack
sharing can be achieved simply by defining its preemption ceiling as zero. As it never blocks any execution, it
may be ignored in the computation of the priority inversion bounds Bk .

TASK SYNCHRONISATION IN DYNAMIC PRIORITY SCHEDULING 5

5 Interruptible Critical Sections
So far we've seen two pessimistic synchronisation protocols, in the sense that they cause blocking. Yet, optimistic
(i.e. non-blocking) concurrency control exist. One of these techniques is the ICS protocol presented by Johnson
[6]. The advantages of the ICSs include: no high priority task ever waits for a lower priority one and the
synchronisation protocol is independent of the scheduling algorithm. However, ICSs have their own limitations:
their purpose is to protect shared data (objects) and it takes a little more overhead for the operating system during
context switches.

The ICSs are based on Restartable Atomic Sequences (RASs). A RAS is a sequence of code that is re-executed
from the beginning if it is interrupted by a context switch.

Each operation on the shared object (executed in an ICS) computes its modifications in a private set of records
obtained from a global stack of records. To commit the operation the ICS has to:

• remove from the global stack the records used;

• add to the global stack the garbage records;

• link the new records to the shared data structure by changing the value of a pointer.

The operation is committed by the execution of a decisive instruction. Every shared object has a commit record
and a flag that indicates if its commit record is valid or invalid.

The execution of an ICS is:

If a previous operation has left a valid commit register, it executes the respective writes to
the shared object (the change is asserted – cleaning phase) and sets the flag invalid.

Computes its changes in the private set of records and writes them in the commit register.

Sets the commit register flag valid (decisive instruction).

Figure 5 illustrates this method applied to the case of a linked list.

g

g

GarbageHead

GarbageTail …

current

GlobalRecordStackData

struct CommitRecordElement {
 word *lhs, rhs;
} CommitRecord[MAX];
boolean valid;
record *GlobalRecordStack;

ICS ()
{
 record *current, *GarbageHead, *GarbageTail;
 word instruction;
 RAS {
 if (Valid) { instruction = 0;
 while (instruction < 3 && CommitRecord[instruction].lhs != NULL) {
 *(CommitRecord[instruction].lhs) = CommitRecord[instruction].rhs;
 instruction ++;
 }

 valid = FALSE; }
 current = GlobalRecordStack; // iniciates list pointers
 GarbageHead = GarbageTail = NULL; // computes modifications to the data structure
 CommitRecord[0].lhs = &(GarbageTail->next); // save modificatioms in CommitRecord
 CommitRecord[0].rhs = current;
 CommitRecord[1].lhs = &GlobalRecordStack;
 CommitRecord[1].rhs = GarbageHead;
 CommitRecord[2].lhs = CriticalLink;
 CommitRecord[2].rhs = CriticalLinkValue;
 valid = TRUE; // commits the operation
 }
}

Figure 5 - ICS Applied to a Linked List Data Structure.

6 S. F. LOPES AND A. P. MAGALHÃES

By ensuring that no high priority task is blocked by a lower priority one, this algorithm prevents priority
inversion. Figure 6 illustrates this property; it assumes that, before t1 , the last operations upon O1 e O2 were
accomplished by τ1 and τ2 , respectively.

1

2

3

τ

τ

τ
1

t
21

t t
3

1

t
7

t
5

t
6

1

i

2

t
4

ICS which accesses
object

ICS which accesses
object

Cleaning phase of the
operation of task

Commit register
filling up phase

iτ

O
1

O
2

Time

Figure 6 - Priority Inversion Prevention with ICSs.

The schedulability analyses for this synchronisation algorithm is not known by the time of this writing. The only
bounding stated by Johnson in [6] is that, under the worst possible scenario, a task executes twice each critical
section. Therefore, we have:

 C E Ii i i j
j

ni

≤ +
=
∑2

1
, , (5)

where, Ei is the maximum execution time of the task τi excluding the duration of critical sections, and Ii,j is time
spent executing the jth critical section of task τi .

6 Conclusion
General purpose synchronisation primitives that may lead a task to unpredictable blocking times or deadlocks are
no solution for real-time systems. Feasible solutions to this problem exist. Moreover, they are widely refereed in
the current literature, but mostly in the context of fixed priority scheduling. Consequently solutions for real-time
task synchronisation in the context of dynamic scheduling are mostly unknown to most real-time systems
designers. This paper has intended to full this gap by surveying, illustrating and comparing the most important
solutions presented in the specialised literature. We hope this can help real-time community in designing modern
and realistic control systems based on dynamic algorithms.

References
[1] C. L. Liu and J. W. Layland, 1973, "Scheduling Algorithms for Multiprogramming in a Hard Real-Time

Environment", Journal of the ACM, vol. 20, no. 1.

[2] A. K.-L. Mok, 1983, "Fundamental Design Problems of Distributed Systems for the Hard-Real-Time
Environment", Ph.D. Thesis, Massachsetts Institute of Tecnhology.

[3] L. Sha, R. Rajkumar and J. Lehoczky, 1990, "Priority Inheritance Protocols: An Aproach to Real-Time
Synchronization", IEEE Transactions on Computers, vol. 39, nº 9.

[4] M.-I. Chen and K.-J. Lin, 1990, "Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-
Time Systems", Journal of Real-Time Systems, vol. 2, nº 4.

[5] T. P. Baker, 1991, "Stack-Based Scheduling of Realtime Processes", Journal of Real-Time Systems, vol.
3, nº 1.

[6] T. Johnson, 1993, "Interruptible Critical Sections for Real-Time Systems", Technical Report,
Department of Computer and Information Science, University of Florida.

