
1
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1. Парная линейная регрессия

1.1. Взаимосвязи переменных

В естественных науках большей частью имеют дело со строгими

(функциональными) зависимостями, при которых каждому значению

одной переменной соответствует единственное значение другой. Однако в

подавляющем большинстве случаев между экономическими переменными

таких зависимостей нет. Например, нет строгой зависимости между

доходом и потреблением, ценой и спросом, производительностью труда и

стажем работы и т.д. Это связано с целым рядом причин и, в частности, с

тем, что, во-первых, при анализе влияния одной переменной на другую не

учитывается целый ряд других факторов, влияющих на нее. Во-вторых, это

влияние может быть не прямым, а проявляться через цепочку других

факторов; в-третьих, многие такие воздействия носят случайный характер

и т.д. Поэтому в эконометрике говорят не о функциональных, а о

корреляционных, либо статистических зависимостях. Статистической

называют зависимость, при которой изменение одной из величин влечет

изменение распределения другой. В частности, статистическая

зависимость проявляется в том, что при изменении одной из величин

изменяется среднее значение другой. Такую статистическую зависимость

называют корреляционной.

В эконометрике при рассмотрении взаимосвязей между двумя

переменными X и Y выделяют одну из величин как независимую

(объясняющую), а другую ‒ как зависимую (объясняемую). В этом случае

изменение первой из них может служить причиной для изменения другой.

Например, рост дохода ведет, как правило, к увеличению потребления,

рост цены ‒ к снижению спроса и т.д. Однако, как было указано выше,

такая зависимость не является однозначной в том смысле, что каждому

конкретному значению объясняющей переменной (набору объясняющих
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переменных) может соответствовать не одно, а множество значений из 

некоторой области. Другими словами, каждому конкретному значению

объясняющей 

соответствует

переменной 

некоторое

(набору 

вероятностное

объясняющих 

распределение

переменных) 

зависимой

переменной (рассматриваемой как случайная величина). Поэтому

анализируют, как объясняющая(ие) переменная(ые) влияет(ют) на

зависимую переменную «в среднем». Зависимость такого типа,

выражаемая соотношением M Y | x  f (x) , называется регрессией Y на X.

При рассмотрении зависимости двух случайных величин говорят о парной

регрессии. Зависимость нескольких переменных, выражаемая функцией

M Y | x1, x2 ,...,xm  f x1, x2 ,...,xm  называют множественной регрессией.

Для отражения того факта, что реальные значения зависимой

переменной не всегда совпадают с ее условными математическими

ожиданиями и могут быть различными при одном и том же значении

объясняющей переменной (наборе объясняющих переменных),

фактическая зависимость должна быть дополнена слагаемым  , которое,

по существу, является случайной величиной и указывает на

статистическую суть зависимости. Из этого следует, что связи между

выражаются 

называемыми

зависимой и объясняющей(ими) переменными 

соотношениями Y  M Y | x  и Y  MY | x1, x2 ,..., xm   ,

регрессионными моделями (уравнениями).

Задача построения качественного уравнения регрессии,

соответствующего выборочным (эмпирическим) данным и целям

исследования, является достаточно сложным и многоступенчатым

процессом. Его можно разбить на три этапа:

1) выбор формулы уравнения регрессии;

2) определение параметров выбранного уравнения;

3) анализ качества уравнения и проверка адекватности уравнения

эмпирическим данным, совершенствование уравнения.

Выбор формулы связи переменных называется спецификацией

уравнения регрессии. В случае парной регрессии выбор формулы обычно

осуществляется по графическому изображению реальных статистических

данных в виде точек в декартовой системе координат, которое называется

корреляционным полем (диаграммой рассеивания).

Пример 1 . Диаграмма рассеяния на рис. 1 соответствует данным о

годовом располагаемом доходе X и годовых расходах Y на личное

потребление (в 1999 г., в условных единицах) 20 семей. Эти данные

представлены в таблице.



x i 2508 2572 2408 2522 2700 2531 2390 2595 2524 2685 2435 2354

y i 2406 2464 2336 2281 2641 2385 2297 2416 2460 2549 2311 2278

x i 2404 2381 2581 2529 2562 2624 2407 2448

y i 2240 2183 2408 2379 2378 2554 2232 2356

По расположению точек на корреляционном поле естественно

предположить, что зависимость между X и Y близка к линейной. Для

построения диаграммы рассеяния в Excel можно воспользоваться

командой меню Вставка  Точечнаядиаграмма.

Рис. 1

Более точной мерой зависимости между величинами является

rxy ,коэффициент корреляции 1  rxy  1, который является безразмерной

величиной и показывает степень линейной связи двух переменных.

Величина rxy , близкая к 1, указывает, что зависимость между данными

случайными величинами почти линейная. Для вычисления коэффициента

корреляции по выборке в Excel можно активировать Мастер функций f x , в

окне Категория выбрать Статистические, в окне Функция выбрать

Коррел. Для данного примера находим rxy  0,895 , что позволяет сделать

вывод о том, что связь между рассматриваемыми переменными близка к

линейной. Это также подтверждается расположением точек на

корреляционном поле.
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1.2. Метод наименьших квадратов

Если регрессия линейна, то речь ведут о линейной регрессии. Модель

линейной регрессии является наиболее распространенным (и простым)

уравнением зависимости между экономическими переменными. Кроме

того, построенное линейное уравнение может быть начальной точкой

эконометрического анализа.

Из предыдущих рассуждений ясно, что парная линейная регрессия

(теоретическое линейное уравнение регрессии) представляет собой

линейную функцию между условным математическим ожиданием

M Y | X  x зависимой переменной Y и одной переменной X:

MY | X  x 0  1  x . (1.1)

Отметим, что принципиальной в данном случае является линейность по

параметрам 0 и 1 уравнения. Для отражения того факта, что каждое

индивидуальное значение y отклоняется от соответствующего условного

математического ожидания, необходимо ввести в соотношение (1.1)

случайное слагаемое  :

Y  M Y | X  x   0  1X   . (1.2)

Соотношение (1.2) называется теоретической линейной регрессионной

моделью; 0 и 1 ‒ теоретическими параметрами (теоретическими

коэффициентами) регрессии;  ‒ случайным отклонением (случайной

ошибкой).

Для определения значений теоретических коэффициентов регрессии

необходимо знать и использовать все значения переменных X и Y

генеральной совокупности, что практически невозможно. Таким образом,

нужно уметь оценивать коэффициенты 0 и 1 на основе статистических

данных (выборки) xi , yi ,i  1,2,..., n , переменных X и Y. Тогда по выборке

ограниченного объема мы сможем построить так называемое эмпирическое

(выборочное) уравнение регрессии

ŷ  b0  b1x , (1.3)

где ŷ ‒ оценка условного математического ожидания M Y | X  x; b0 и b1

– оценки неизвестных параметров  0 и 1 , называемые эмпирическими

(выборочными) коэффициентами регрессии. В каждом конкретном

наблюдении выборки имеем yi  b0  b1xi  ei , где отклонение ei ‒ оценка

теоретического случайного отклонения  i .



В силу несовпадения статистической базы для генеральной 

совокупности и выборки оценки b0 и b1 практически всегда отличаются от

истинных значений коэффициентов 0 и 1 , что приводит к несовпадению 

эмпирической и теоретической линий регрессии. Различные выборки из

одной и той же генеральной совокупности обычно приводят к 

определению отличающихся друг от друга оценок. Задача состоит в том,

чтобы по конкретной выборке xi , yi , i  1,2...,n , найти оценки b0 и b1

неизвестных параметров  0 и 1 так, чтобы построенная линия регрессии

являлась бы наилучшей в определенном смысле среди всех других

прямых. Другими словами, построенная прямая ŷ  b0  b1x должна быть

«ближайшей» к точкам наблюдений по их совокупности.

Рассмотрим задачу «наилучшей» аппроксимации набора наблюдений

xi , yi , i  1,2...,n линейным уравнением (1.3). На рис. 2 приведены

диаграмма рассеяния наблюдений из примера 1 и линия регрессии.

Величина ŷ i описывается как расчетное значение переменной y, которое

соответствует xi . Наблюдаемые значения yi не лежат в точности на линии

регрессии, т.е. не совпадают с расчетными значениями ŷi . Разность yi  ŷ i

обозначим ei .

Рис. 2

Коэффициенты 0 и 1 будем оценивать по выборке с помощью

метода наименьших квадратов (МНК, именно этот метод используется в

Microsoft Excel). Суть МНК заключается в минимизации суммы квадратов

отклонений наблюдаемых значений объясняемой переменной от ее

расчетных значений, т.е. необходимо найти минимум квадратичной

функции двух переменных b0 и b1 :
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i1

2

i i  i 0 1 i

2

i1 i1

0 1 i  ŷ   yF(b ,b ) e y  b  b x  .

Необходимым условием существования минимума функции двух

переменных является равенство нулю ее частных производных по 

переменным b0 и b1 :



 1

0

i 0 1 i

i 0 1 i

b
F

 2y  b  b x  0.

b

F
 2y  b  b x  0

Разрешив полученную систему относительно b0 и b1 , получим формулы для 

вычисления оценок парной линейной регрессии:





b 0

b1 

 y  b x

x  x

xy  x  y

1

2 2 , (1.4)

где x  
n

i1

i

1

n
x , x  

n

i1

i

1

n

22 x , y  
n

i1

i

1

n
y , xy 

n

 i i

i1

x y .
1

n

Замечания.

x
S

1 xy
1) Нетрудно доказать, что имеет место соотношение b  r 

S y , где

x y

xy
S  S


xy  x  y

r x
– выборочный коэффициент корреляции; S  x2  x 2 и

S y  y 2  y 2 ‒ стандартные отклонения. Таким образом, коэффициент

регрессии пропорционален коэффициенту корреляции.

2) Линия регрессии проходит через точку x, y, и выполняются

равенства e  0 , y  ŷ .

3) В настоящее время оценки b0 и b1 обычно не вычисляют «вручную»

по формулам (6). Для этого можно воспользоваться, например,

настройкой «Пакет анализа» в приложении Excel (см. пример ниже).
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1.3. Предпосылки регрессионного анализа

Линейная регрессионная модель с двумя переменными имеет вид

y  0  1x   ,

где Y ‒ объясняемая переменная, X ‒ объясняющая переменная,  ‒

случайная ошибка. Для того чтобы регрессионный анализ, основанный на

МНК, давал наилучшие из всех возможных результаты, должны

выполняться определенные условия (условия Гаусса ‒ Маркова).

1. Математическое ожидание случайной ошибки в любом наблюдении

должно быть равно нулю, т.е.

Mi  0 (i 1,2,...,n) .

2. Дисперсия случайной ошибки должна быть постоянной для всех 

наблюдений, т. е.

(i  1,2,..., n) .2 2

i iD  M  
3. Случайные ошибки должны быть статистически независимы 

(некоррелированы) между собой, т.е.

(i  j) .
i jM    0

xi4. Объясняющая переменная есть величина неслучайная.

При выполнении условий Гаусса-Маркова модель называется

классической нормальной линейной регрессионной моделью. Наряду с

условиями Гаусса-Маркова обычно предполагается, что случайная ошибка
2

i
распределена нормально, т. е.   N0, . Заметим, что в этом случае

требование некоррелированности случайных ошибок эквивалентно их

независимости.

Рассмотрим подробнее условия и предположения, лежащие в основе

регрессионного анализа.

Первое условие означает, что случайная ошибка не должна иметь

систематического смещения. Если постоянный член включен в уравнение

регрессии, то это условие выполняется автоматически.

Второе условие означает, что дисперсия случайной ошибки в каждом

наблюдении имеет только одно значение. Под дисперсией  2 имеется в

виду возможное поведение случайной ошибки до того, как была сделана

выборка. Величина  2 неизвестна, и одна из задач регрессионного анализа

состоит в ее оценке. Условие независимости дисперсии случайной ошибки

от номера наблюдения называется гомоскедастичностью (что означает

одинаковый разброс). Зависимость дисперсии случайной ошибки от

номера наблюдения называется гетероскедастичностью. Таким образом,



(i  1,2,...,n) ‒ гомоскедастичность,

(i  1,2,...,n) ‒ гетероскедастичность.2

i i

 Di 2

 D 

Характерные диаграммы рассеяния гомоскедастичности и гетеро-

скедастичности показаны на рис. 3, а и б соответственно.

Рис. 3

Если условие гомоскедастичности не выполняется, то оценки

коэффициентов регрессии будут неэффективными, хотя и несмещенными.

Существуют специальные методы диагностирования и устранения гетеро-

скедастичности.

Третье условие указывает на некоррелированность случайных

отклонений для разных наблюдений. Это условие часто нарушается, когда

данные являются временными рядами. В случае когда третье условие не

выполняется, говорят об автокорреляции остатков. Типичный вид данных

при наличии автокорреляции показан на рис. 4. Если условие независимости

случайных ошибок не выполняется, то оценки коэффициентов регрессии,

полученные по МНК, оказываются неэффективными, хотя и

несмещенными. Существуют методы диагностирования и устранения

автокорреляции.

Рис. 4
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Четвертое условие является особенно важным. Если условие о

неслучайности объясняющей переменной не выполняется, то оценки

коэффициентов регрессии будут смещенными и несостоятельными.

Нарушение этого условия может быть связано с ошибками измерения

объясняющих переменных или с использованием лаговых переменных.

Предположение о нормальности распределения случайной ошибки

необходимо для проверки значимости параметров регрессии и для

интервального оценивания.

Теорема Гаусса-Маркова. Если условия 1 ‒ 4 регрессионного

анализа выполняются, то оценки b0 и b1 , сделанные с помощью МНК,

являются наилучшими линейными несмещенными оценками, т.е. обладают

следующими свойствами:

1) несмещенности: M (b0 )  0 , M (b1)  1 ,

(означает отсутствие систематической ошибки в положении линии

регрессии);

2) эффективности: имеют наименьшую дисперсию в классе всех

линейных несмещенных оценок, равную

D(b0 ) 
x 2  2

x
n  S 2 1

10

2

xn  S

 2

, D(b )  ;

3) состоятельности:
n
lim D(b0 )  0 ,

n
lim D(b1)  0 .



1.4. Расчет стандартных ошибок коэффициентов регрессии

Теоретические дисперсии Db0, Db1 зависят от дисперсии  2

случайной ошибки. По данным выборки отклонения  i , а, следовательно, и

их дисперсия  2 неизвестны, поэтому они заменяются наблюдаемыми

остатками ei и их выборочной дисперсией. Несмещенной оценкой

 2

2

n  2

e
дисперсии является величина (остаточная дисперсия) S 2 

 i
,

которая служит мерой разброса зависимой переменной вокруг линии

S 2регрессии. Величина S  называется стандартной ошибкой регрессии.

 2Заменив в теоретических дисперсиях неизвестную на оценку S 2 , 

получим оценки дисперсии:

b0

x 2  S 2

S 2 
n x2  x 2 

2
S 2

b1

n  x2  x 2, S  . (1.5)

Величины

величин b0

регрессии.

S 2S  S 2 , S 
b0 b0 b1 b1

есть стандартные отклонения случайных

и b1 , называемые стандартными ошибками коэффициентов

Объяснение данных соотношений имеет 

дробей

наглядную 

(1.5) стоитграфическую интерпретацию. В знаменателях

сумма
xi  x квадратов отклонений x

2

i от среднего значения x .

Эта сумма велика (следовательно, вся дробь мала, и выборочные

дисперсии оценок меньше), если регрессия определяется на широком

диапазоне значений переменной X. Например, на рис. 5 через пары точек

(1, 3) и (2, 3) проведена одна и та же прямая. Но диапазон (1, 3) шире

диапазона (2,3). Если вместо точки 3 рассмотреть либо точку 3а, либо 3б

(т.е. при случайном изменении выборки), то наклон прямой для пары (1, 3)

изменится значительно меньше, чем для пары (2, 3).

Рис. 5
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Выборочная дисперсия свободного члена уравнения регрессии

n

x i

2

S 2  S 2 b0 b1 b1
пропорциональна дисперсии S 2 . Действительно, чем

сильнее меняется наклон прямой, проведенной через данную точку x, y,

тем больше разброс значений свободного члена, характеризующего точку

пересечения этой прямой с осью OY.

Кроме того, разброс значений свободного члена тем больше, чем

больше средняя величина x 2 . Это связано с тем, что при больших по

модулю значениях X даже небольшое изменение наклона регрессионной

прямой может вызвать большое изменение оценки свободного члена,

поскольку в этом случае в среднем велико расстояние от точек

наблюдений до оси OY. На рис. 6 через пары точек (1, 2) и (3, 4)

проходит одна и та же прямая, пересекающая ось OY в точке (0, b0). Для

второй из этих пар значения переменной X больше по абсолютной

величине (при одинаковом диапазоне изменений X и Y), чем для первой.

Если в этих парах точки 1 и 3 изменить на одну и ту же величину (новые

точки 1а, 3а), то углы наклона новых прямых (1а, 2) и (3а, 4) будут

одинаковы. Но свободный член b01 для первой прямой будет существенно

меньше отличаться от b0, чем свободный член b02 для второй прямой.

Рис. 6
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1.5. Проверка гипотез относительно коэффициентов линейного 

уравнения регрессии

Эмпирическое уравнение регрессии определяется на основе

конечного числа статистических данных. Поэтому коэффициенты

эмпирического уравнения регрессии являются случайными величинами,

изменяющимися от выборки к выборке. При проведении статистического

анализа перед исследователем зачастую возникает необходимость

сравнения теоретических значений 0 и 1 с некоторыми заданными

значениями. Данный анализ осуществляется по схеме статистической

проверки гипотез. Пусть по выборочным данным получена оценка b1. Для

проверки гипотезы
*

0 1 1
H :    ,

*

1 1 1
H :   

используется статистика

b   *

t  1 1 ,
Sb

1

которая при справедливости H 0 имеет распределение Стьюдента с   n  2

степенями свободы. По выборке вычисляется значение t-статистики ‒ tнабл.. .

По таблице критических точек распределения Стьюдента по заданному

уровню значимости α и числу степеней свободы   n  2 находят

критическую точку tкр . . Тогда

tнабл.

13

– если tнабл.  tкр. , то нет оснований для отклонения H 0 ;

– если  tкр. , то H 0 отвергается в пользу H1 .

Замечание. В экономических исследованиях проверку гипотез

осуществляют, как правило, при 5%-ном и 1%-ном уровнях значимости.

Если нулевая гипотеза отклоняется при 1%-ном уровне значимости, то она

автоматически отклоняется и при 5%-ном уровне, а если не отвергается

при 5%-ном уровне, то не отвергается и при 1%-ном уровне. Если при

5%-ном уровне значимости гипотеза отклоняется, а при 1%-ном ‒ не

отвергается, то результаты проверки гипотезы приводятся при двух

уровнях значимости.

Результаты оценивания регрессии совместимы не только с
*

0 1 1
конкретной гипотезой H :    , но и с некоторым множеством



*

1 1
значений, совместимых с оценкой b . Точнее, значение  совместимо с b ,

1

если H 0 не отвергается, т.е. выполняется условие

b1
S

1 1  t
кр.

b1

кр. кр.
S

 1 1  t, или  t
b   * b   *

.

Разрешив это неравенство относительно
1
 * и учитывая, что гипотеза

*

0 1 1
H :    не отвергается, получим доверительный интервал для

неизвестного коэффициента 1 :

1 11 кр. b 1 1 кр. b t Sb  t S    b

Посредине интервала лежит величина

.

b1 . Границы интервала

симметричны относительно b1 , зависят от выбора уровня значимости и 

являются случайными числами. Доверительный интервал покрывает

1
значение  с заданной вероятностью 1, т.е.

P(b1  tкр.  Sb  1  b1  tкр.  Sb )  1 .

Наиболее важной на начальном этапе статистического анализа

построенной модели все же является задача установления наличия

линейной зависимости между Y и X. Эта проблема может быть решена

по той же схеме:

H0 : 1  0 ,

H1 : 1  0 .

Гипотеза в такой постановке называется гипотезой о статистической

значимости коэффициента регрессии. При этом, если H 0 не отвергается,

то есть основания считать, что величина Y не зависит от X (точнее связь

между этими двумя переменными далека от линейной зависимости). В

этом случае говорят, что коэффициент b1 статистически незначим (он

слишком близок к нулю). При отклонении H 0 коэффициент b1 считается

статистически значимым, что указывает на наличие определенной

линейной зависимости между Y и X. В данном случае рассматривается

двусторонняя критическая область, т.к. важным является именно отличие

от нуля коэффициента регрессии, и он может быть как положительным,

так и отрицательным.

Поскольку в данном случае полагается, что 1  0 , то формально

значимость оцененного коэффициента регрессии b1 проверяется с 

помощью анализа отношения его величины к его стандартной ошибке

S  S 2 . В случае выполнения исходных предпосылок модели эта дробь
b1 b1
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имеет распределение Стьюдента с числом степеней свободы   n  2 , где n

– число наблюдений. Данное отношение называется t-статистикой:

b1

S 2

b1

1

t 
b1 
Sb

.

Для t-статистики проверяется нулевая гипотеза о равенстве ее нулю.

Очевидно, что t  0 равнозначно b1  0 . Фактически это свидетельствует

об отсутствии линейной связи между Y и X. По аналогичной схеме на

основе t-статистики проверяется гипотеза о статистической значимости

коэффициента b0 :

b0

15

S 2

b0

0

t 
b0 
Sb

.

Отметим, что для парной регрессии более важным является анализ

статистической значимости коэффициента b1 , т.к. именно в нем скрыто

влияние объясняющей переменной X на зависимую переменную Y.



1.6. Проверка общего качества уравнения регрессии. 

Коэффициент детерминации.

После проверки значимости каждого коэффициента регрессии

обычно проверяется общее качество уравнения, которое оценивается по

тому, как хорошо эмпирическое уравнение регрессии согласуется со

статистическими данными. Другими словами, насколько широко рассеяны

точки наблюдений относительно линии регрессии.

Пусть на основе выборочных наблюдений построено уравнение

регрессии ŷ , тогда значение зависимой переменной 

наблюдении можно разложить на две составляющие:

yi  ŷ i  ei ,

y в каждом

где остаток ei ‒ та часть зависимой переменной y, которую невозможно 

объяснить с помощью уравнения регрессии. Разброс значений зависимой

y
переменной характеризуется выборочной дисперсией S 2 . Разложим

y
дисперсию S 2 :

2 2

y yˆe yˆ eS 2  S 2  S  S  2covyˆ,e,

где covy ,̂e ‒ выборочная ковариация переменных ŷ и e. Поскольку

covy ,̂e 0 , то S 2  S 2  S 2

y yˆ e (такое разложение возможно, если только

константа b0 включена в уравнение регрессии). Таким образом, дисперсия

yS 2 разложена на две части:

ŷ

2

e

 S 2 ‒ часть, объясненная регрессионным уравнением;

 S ‒ необъясненная часть.

Коэффициентом детерминации R2 называется отношение

y
S 2

S 2

S 2

S 2

R 2 
yˆ
 1 e ,

y

характеризующее долю вариации (разброса) зависимой переменной,

объясненную с помощью уравнения регрессии. Отношение e

S 2

S 2

y

R2 1, то подгонка точная:

есть доля

необъясненной дисперсии. Если S 2  S 2 ,
y yˆ

лежат на2

e i i
S  0 , y  ŷ , i  1,2,...,n , т.е. все точки наблюдения

регрессионной прямой. Если R2  0 , то регрессия ничего не дает (т.е.

переменная x не улучшает качества предсказания y по сравнению с

горизонтальной прямой ŷ  y ):
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S 2  S 2 ,
y e yˆ i

S 2  0 , ŷ  y , (i  1,2,...,n).

Чем ближе к единице R 2 , тем лучше качество подгонки, т.е. ŷ более

точно аппроксимирует y.

Как правило 0  R2  1 , но в исключительных случаях возможно

нарушение неравенства 0  R2 . Последнее происходит обычно для

линейных уравнений, в которых отсутствует свободный член b0 . Оценивая

такое уравнение по МНК, мы вынуждены рассматривать лишь те прямые

(гиперплоскости), которые проходят через начало координат. Значение R 2

получается отрицательным тогда, когда разброс значений зависимой

переменной вокруг линии Y  y меньше, чем вокруг любой из прямых,

проходящих через начало координат.

Для определения статистической значимости коэффициента

детерминации R 2 проверяется гипотеза
H 0 : R  0 ,

2

H1 : R  0 .
2

Для проверки нулевой гипотезы используется статистика:

1 R 2
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
R n 2 ,2

F

которая при справедливости

распределение) с 1  1,  2  n  2

H 0 имеет распределение Фишера (F-

степенями свободы. Вычисленный

критерий F сравнивается с критическим значением Fкр.:

– если Fнабл.  Fкр. , то нет оснований для отклонения H 0 , т.е. R 2

статистически незначим (говорят еще, что уравнение регрессии незначимо 

в целом);

R 2– если Fнабл.  Fкр. , то нет оснований для отклонения H 0 , т.е. 

статистически значим (уравнение регрессии значимо в целом).

Замечание. В случае парной регрессии коэффициент детерминации есть

x, y
квадрат коэффициента корреляции переменных x и y: R2  r 2 .



1.7. Доверительные интервалы для зависимой переменной

Одной из центральных задач моделирования является

предсказание (прогнозирование) значений зависимой переменной при

определенных значениях объясняющих переменных. Здесь возможен

двоякий подход: либо предсказать условное математическое ожидание

зависимой переменной при определенных значениях объясняющих

переменных (предсказание среднего значения), либо прогнозировать

некоторое конкретное значение зависимой переменной (предсказание

конкретного значения).

Предсказание среднего значения. Пусть построено уравнение

парной регрессии ŷ  b0  b1x , на основе которого необходимо предсказать

0 0условное математическое ожидание MY X  x переменной Y при X = x .

В данном случае значение yˆ  b  b x является оценкой MY X  x .
0 0 1 0 0

Тогда естественным является вопрос, как сильно может уклониться

модельное среднее значение ŷ0 , рассчитанное по эмпирическому

уравнению регрессии, от соответствующего условного математического

ожидания. Ответ на этот вопрос дается на основе интервальных оценок,

построенных с заданной надежностью 1 при любом конкретном

значении x0 объясняющей переменной.

Доверительный интервал для MY X  x     x имеет вид:
0 0 1 0



 



2 2 
 0 

0 1 0
2 2 0 1 0

n x  xn
 S 

nx  x   
1 x  x 2

1 x  x 2

n
 b x  t  S   0 ;b  b x  tb


;n2

2


;n2

2

(1.6)

Предсказание индивидуальных значений зависимой переменной

На практике иногда более важно знать дисперсию Y, чем ее средние

значения или доверительные интервалы для условных математических 

ожиданий.

Пусть нас интересует некоторое возможное значение y0 переменной

x0Y при определенном значении объясняющей переменной X.

Предсказанное по уравнению регрессии значение Y при X = x0

составляет ŷ0 . Тогда интервал



18










2 2
 0 

0
2 2

0

x  x 
 t  S  11  0 ; ŷ

nx  x  n
1 x  x 2

1 x  x 2

nn
 ŷ  t  S 


;n2

2


;n2

2



определяет границы, за пределами которых могут оказаться не более

100α% точек наблюдений при X = x0. Заметим, что данный интервал

шире доверительного интервала для условного математического ожидания

(на рис. 6 границы этого интервала отмечены пунктирной линией).

Проводя анализ построенных интервалов, несложно заметить, что

наиболее узкими они будут при X = x0. По мере удаления x0 от среднего

значения доверительные интервалы расширяются (см. рис. 7). Поэтому

необходимо достаточно осторожно экстраполировать полученные

результаты на прогнозные области. С другой стороны, с ростом числа

наблюдений n эти интервалы сужаются к линии регрессии при n .

Рис. 7
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1.8. Реализация типовых задач в MS Excel

Для расчета параметров уравнения линейной регрессии и проверки

его адекватности исследуемому процессу Microsoft Excel располагает

функцией Регрессия. Для вызова этой функции необходим пакет

статистического анализа. Пакет анализа представляет собой надстройку,

т.е. программу, которая доступна при установке Microsoft Office или

Excel. Чтобы использовать эту надстройку, необходимо сначала загрузить

ее. Для этого:

– на вкладке Файл выберите элемент Параметры, затем пункт

Надстройки;

– нажмите кнопку Перейти;

– В окне Доступные надстройки установите флажок Пакет анализа, а 

затем нажмите кнопку ОК.

Для вызова функции Регрессия необходимо выбрать команду меню

Данные → Анализ данных. На экране раскроется диалоговое окно Анализ

данных, в котором следует выбрать значение Регрессия, в результате чего

на экране появится диалоговое окно Регрессия, представленное на рис. 8.

Рис. 8

В диалоговом окне Регрессия задаются следующие параметры.

1. В поле Входной интервал Y вводится диапазон ячеек, содержащих

исходные данные по результативному признаку. Диапазон должен

состоять из одного столбца.

20
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2. В поле Входной интервал X вводится диапазон ячеек, содержащих

исходные данные факторного признака. Максимальное число

входных диапазонов (столбцов) равно 16.

3. Флажок Метки устанавливается в том случае, если первая строка во

входном диапазоне содержит заголовок. Если заголовок отсутствует,

этот флажок следует сбросить. В последнем случае для данных

выходного диапазона будут автоматически созданы стандартные

названия.

4. Флажок опции Уровень надежности устанавливается в том случае,

если в расположенное рядом с флажком поле необходимо ввести

уровень надежности, отличный от уровня 95%, применяемого по

умолчанию. Установленный в данном поле уровень надежности

используется для проверки значимости коэффициента детерминации

и коэффициентов регрессии. Если данный флажок сброшен, в

таблице параметров уравнения регрессии генерируются две

одинаковые пары столбцов для границ доверительных интервалов.

5. Флажок Константа-ноль устанавливается в том случае, когда

требуется, чтобы линия регрессии прошла через начало координат

(т.е. b0  0).

6. Переключатель в группе Параметры вывода может быть

установлен в одно из трех положений, определяющих, где должны

быть размещены результаты расчета: Выходной интервал, Новый

рабочий лист или Новая рабочая книга.

7. Флажок опции Остатки устанавливается в том случае, если в

диапазон ячеек с выходными данными требуется включить столбец

остатков.

8. Флажок опции Стандартизированные остатки устанавливается в

том случае, если в диапазон ячеек с выходными данными требуется

включить столбец стандартизированных остатков.

9. Флажок опции График остатков должен быть установлен, если на

рабочий лист требуется вывести графики зависимости остатков от

факторных признаков xi .

10. Флажок опции График подбора должен быть установлен, если на

рабочий лист требуется вывести точечные графики зависимости

теоретических результативных значений ŷ от факторных признаков

xi .
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11. Флажок опции График нормальной вероятности должен быть

установлен, если на рабочий лист требуется вывести точечный

график зависимости наблюдаемых значений y от автоматически

формируемых интервалов персентелей.

Пример. Для исследования зависимости годового объема производства Y 

от основных фондов X получены данные по 20-ти предприятиям.

X 12,5 17,5 17,5 17,5 22,5 22,5 22,5 22,5 22,5 27,5 27,5

Y 20,5 21,5 21,5 22,5 22,5 22,5 23,5 23,5 23,5 23,5 23,5

27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5

23,5 24,5 24,5 24,5 24,5 24,5 24,5 24,5 24,5

Результаты решения данной задачи с помощью функции 

представлены на рис. 9 ‒ 11.

Регрессия

ВЫВОДИТОГОВ

Регрессионная статистика

МножественныйR 0,923584
R-квадрат 0,853006

НормированныйR-

квадрат 0,84484

Стандартная ошибка 0,47647

Наблюдения 20

Рис. 9. Результаты расчета: регрессионная статистика

На рис. 9 представлены результаты расчета регрессионной

статистики. Эти результаты соответствуют следующим статистическим

показателям:

• Множественный R ‒ коэффициент корреляции R;

• R-квадрат ‒ коэффициент детерминации R2 ;

• Нормированный R ‒ нормированное значение коэффициента корреляции;

• Стандартная ошибка ‒ стандартное отклонение для остатков;

• Наблюдения ‒ число исходных наблюдений.

На рис. 10 представлены результаты расчета дисперсионного

анализа, которые используются для проверки значимости коэффициента

детерминации R2 .



Дисперсионныйанализ

df SS MS F

Значимость 
F

Регрессия 1 23,71358 23,71358 104,4544 6,38E-09

Остаток 18 4,08642 0,227023

Итого 19 27,8

Рис. 10. Результаты расчета: дисперсионный анализ

Значения в столбцах на рис. 10 имеют следующую интерпретацию.

• Столбец df ‒ число степеней свободы. Для строки Регрессия число

степеней свободы определяется количеством факторных признаков m, для

строки Остаток ‒ числом наблюдений n и количеством переменных в

уравнении регрессии m + 1: n ‒ (m + 1), а для строки Итого ‒ суммой

степеней свободы для строк Регрессия и Остаток и, следовательно,

равно n ‒ 1.

• Столбец SS ‒ сумма квадратов отклонений. Для строки Регрессия

значение определяется как сумма квадратов отклонений расчетных данных

от среднего:

 y2 .
n

i1

2

1  iSS  ŷ

Для строки Остаток

данных от теоретических:

это сумма квадратов отклонений фактических

n

SS  y
i1

22

2  i i ŷ  .

Для строки Итого это сумма квадратов отклонений расчетных данных от 

среднего:

 y2 или
n

SS  y
i1

2

3  i 21

2 2 2

2
SS  SS  SS .

• Столбец МS содержит значения дисперсии, которые рассчитываются 

по формуле:

df
MS 

SS .

n
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i

i1

n

yˆ  y2

ф

2Для строки Регрессия это факторная дисперсия   .

2

n  (m 1)

y  ŷ 
2

ост.
Для строки Остаток это остаточная дисперсия 

n

i i

 i1 .



• Столбец F содержит расчетное значение F-критерия Фишера Fр, 

вычисляемое по формуле:

MS(Остатки)


MS(Регрессия) .F
p

• Столбец Значимость F содержит значение уровня значимости, 

соответствующее вычисленному значению Fр.

На рис. 11 представлены полученные значения коэффициентов 

регрессии bi и их статистические оценки.

Коэффициенты
Стандартная 

ошибка

t-

статистика

P-
Значение

Нижние 

95%

Верхние 

95%
Y-

пересечение 17,593 0,578 30,430 6,23E-17 16,378 18,807

X 0,242 0,024 10,220 6,38E-09 0,192 0,292

Рис. 11. Результаты расчета: коэффициенты уравнения регрессии и их статистические 

оценки

Столбцы на рис. 11 содержат следующие значения:

• Коэффициенты ‒ значение коэффициентов bi .

• Стандартная ошибка ‒ стандартные ошибки коэффициентов bi .

• t-статистика ‒ расчетные значения t-критерия, вычисляемые по формуле:

стандартная ошибка
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коэффициенты
t  статистика  .

• Р-значение ‒ значения уровней значимости, соответствующие

вычисленным значениям t p .

• Нижние 95% и Верхние 95% ‒ нижние и верхние границы доверительных

интервалов для коэффициентов регрессии bi .

Переходя к анализу полученных расчетных данных, можно

построить уравнение регрессии с вычисленными коэффициентами,

которое будет выражать зависимость годового объема производства от

основных фондов:

ŷ  17,593  0,242x .

Выборочный коэффициент детерминации R2  0,853 (рис. 9)

показывает, что 85,3% разброса зависимой переменной y объясняется

построенной регрессией ŷ . Рассчитанный уровень значимости

(показатель Значимость F рис. 10)  р  6,38 109  0,05 подтверждает
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R2
статистическую значимость величины (т.е. гипотеза H 0 : R2  0
отвергается в пользу H1 : R  0 при уровне значимости   0,05 ). В этом

2

случае говорят еще, что уравнение регрессии значимо в целом при   0,05 .

Следующим этапом является проверка значимости коэффициентов

регрессии b0 и b1 . При парном сравнении коэффициентов и их стандартных

ошибок (см. рис. 11) можно сделать вывод, что вычисленные

коэффициенты статистически значимыми (т.е. гипотезы 

отвергаются). Этот вывод подтверждается

являются

и H0 : 1  0

Р-значений

H0 : 0  0

величинами 

значимости

коэффициентов, которые меньше уровня

  0,05 . Доверительные интервалы с уровнем надежности

  1   1 0,05  0,95 для теоретических коэффициентов  0 и 1 равны

соответственно (16,378; 18,807) и (0,192; 0,292). Последнее означает, что,

основываясь на выборочных данных, можно утверждать о попадании

неизвестных параметров  0 и 1 в указанные интервалы с вероятностью

0,95. Заметим также, что значение 0 не принадлежит никакому из этих

интервалов, откуда можно сделать вывод о том, что гипотезы H0 : 0  0 и

H0 : 1  0 отвергаются при уровне значимости   0,05 , как и было сказано

выше.

R 2Проверка значимости коэффициента детерминации и

коэффициентов регрессии b0 и b1 при факторном признаке подтверждает

адекватность полученного уравнения.

Дадим экономическую интерпретацию. Коэффициент регрессии

b1  0,242 показывает, что при увеличении размера основных фондов на 1

у.е., годовой объем производства возрастает в среднем на 0,242 у.е.

Коэффициент регрессии b0  17,593 означает, что при нулевом размере

основных фондов годовой объем производства ожидается (в среднем) на

уровне 17,593 у.е.

Замечание. К экономической интерпретации коэффициента b0 следует

относиться с известной долей осторожности, сообразуясь со здравым

смыслом, поскольку выборочные данные находятся достаточно далеко от

нуля. В ряде случаев ограничиваются интерпретацией коэффициента при

объясняющей переменной.

Дадим точечный и интервальный прогнозы среднего размера

годового объема производства при размере основных фондов 25 у.е.



Подставив в выборочное уравнение регрессии значение x = 25, получим 

точечный прогноз:

ŷ x  25  17,593  0,242  25  26,642 .

Таким образом, при размере основных фондов на уровне 25 у.е., годовой 

объем производства ожидается (в среднем) на уровне 26,642 у.е.

Для построения доверительного интервала для прогнозного среднего 

значения воспользуемся формулой (1.6):











2 2
0

2 2
 0

0

nx  x n
; ŷ x  x  t  S 

nx  x 
1 x  x 2

1 x  x 2

n
 ŷ x x  t  S 


;n2

2


;n2

2

 0  . (1.6)

Имеем: n = 20; ŷ x  25 26,642; S = 0,476 (рис. 8); x 
1

n

20


11

i
x  24 ;

1

n

20
2

i1

2x   i  2,12 ; (из
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0,05
x  596,25 ; t  t

;n2 ;202
2 2

распределения Стьюдента или Excel 

Стьюдент.обр.2х). Подставив полученные

таблиц критических точек

– fx ‒ статистические ‒ 

значения в формулу (1.6),

получим 95%-ный доверительный интервал для прогнозного среднего

значения результативного признака Y при X = 25: (26,642 ‒ 0,231; 26,642

+ 0,231), откуда находим, что в интервал (26,411; 26,873) среднее

значение годового объема производства при размере основных фондов,

равным 25 у.е., попадает с вероятностью 0,95 (если ориентироваться на

выборочные данные).
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2. Множественная линейная регрессия

2.1. Определение параметров уравнения регрессии

На любой экономический показатель практически всегда оказывают

влияние не один, а несколько факторов. Например, спрос на некоторое

благо определяется не только ценой данного блага, но и ценами на

заменяющие и дополняющие блага, доходом потребителей и многими

другими факторами. В этом случае вместо парной регрессии M Y | x  f (x)

рассматривается множественная регрессия

M Y | x1, x2 ,..., xm  f (x1, x2 ,..., xm ) .

Задача оценки статистической взаимосвязи переменных Y и X1, X2, …, Xm

формулируется аналогично случаю парной регрессии. Уравнение

множественной регрессии может быть представлено в виде

Y  f , X   ,

где X = (X1, X2, …, Xm) ‒ вектор независимых (объясняющих) переменных;

β ‒ вектор параметров (подлежащих определению); ɛ ‒ случайная ошибка

(отклонение); Y ‒ зависимая (объясняемая) переменная.

Рассмотрим самую употребляемую и наиболее простую из моделей

множественной регрессии ‒ модель множественной линейной регрессии.

Теоретическое линейное уравнение регрессии имеет вид:

Y  0  1 X1  2 X 2  ... m Xm  

или для индивидуальных наблюдений i, i = 1,2,…,n:

yi  0  1xi1  2 xi2  ... m xim  i .

Здесь   (0 , 1 ,...m ) ‒ вектор размерности (m+1) неизвестных

параметров. Коэффициент βj, j=1,2,…,m, называется j-м теоретическим

коэффициентом регрессии. Он характеризует чувствительность величины

Y к изменению Xj. Другими словами, он отражает влияние на условное

математическое ожидание MY | x1, x2 ,...,xm  зависимой переменной Y

объясняющей переменной Xj при условии, что все другие объясняющие

переменные остаются постоянными. Коэффициент β0 определяет

значение Y, в случае, когда все объясняющие переменные Xj равны

нулю. Случайная ошибка ɛ удовлетворяет тем же предпосылкам, что и в

модели с парной регрессией. Предполагается, что объясняющие

переменные некоррелированы друг с другом (в модели отсутствует

мультиколлинеарность).



На основе n наблюдений оценивается выборочное уравнение регрессии

ŷ  b0  b1x1  b2 x2  ... bm xm ,

где b0, b1, …, bm ‒ оценки параметров β0, β1, …, βm.

Для оценки параметров регрессии используется метод наименьших

квадратов. В соответствии с МНК минимизируется сумма квадратов

остатков:

2

i i  i 0 1 i1 2 i2 m im

n n n

i1 i1 i1

0 1 2 m iF(b ,b ,b ,...,b ) e y  ŷ   y  b  b x  b x  ... b x 2  min .

Необходимым условием ее минимума является равенство нулю всех ее

частных производных. В результате приходим к системе из (m + 1)

линейного уравнения с (m + 1) неизвестными, называемой системой

нормальных уравнений. Ее решение в явном виде обычно записывается в

матричной форме, иначе оно становится слишком громоздким. Оценки

параметров модели и их теоретические дисперсии в матричной форме

определяются выражениями

21T

i ii
b  X T X 1 X TY , D(b )  X X   ,

где b ‒ вектор с компонентами b0, b1, …, bm; X ‒ матрица значений

объясняющих переменных; Y ‒ вектор значений зависимой переменной;

ϭ2 – дисперсия случайной ошибки. Несмещенной оценкой ϭ2 является

величина S2 (остаточная дисперсия):

2

 i

1

n m 1

2S  e .

Величина S называется стандартной ошибкой регрессии. Заменяя в

S2теоретических дисперсиях неизвестную дисперсию ϭ2 на ее оценку и

извлекая квадратный корень, получим стандартные ошибки оценок 

коэффициентов регрессии

1
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Т

bi ii
S  S X X  .

Если предпосылки относительно случайной ошибки выполняются, оценки

параметров множественной регрессии являются несмещенными,

состоятельными и эффективными.



2.2. Интервальные оценки коэффициентов теоретического уравнения 

регрессии и зависимой переменной

i
Sb

По аналогии с парной регрессией после определения точечных

оценок bi коэффициентов βi (i = 0, 1, 2,…, m) теоретического уравнения

регрессии могут быть рассчитаны интервальные оценки указанных

коэффициентов. Для построения интервальной оценки коэффициента βi

строится t-статистика t 
bi  i , имеющая распределение Стьюдента с

числом степеней свободы ν = n ‒ m ‒ 1 (n ‒ объем выборки, m ‒

количество объясняющих переменных в модели). Пусть необходимо

построить 100(1 ‒ α)%-ный доверительный интервал для коэффициента βi.

Тогда по таблице критических точек распределения Стьюдента по

требуемому уровню значимости α и числу степеней свободы ν находят

;nm1
критическую точку t

2

, удовлетворяющую условию

  





2
;nm1 ;nm1;nm1

P t  t   P t  t  t  1 .
  2 2 

Подставив в это условие t-статистику
i

Sb

t 
bi  i , получим












;nm1
 t

2

bi  i  1 ,
;nm1

2

P t
Sb

i



или после преобразования



2
;nm1;nm1

 i  bi  t
2

Pbi  t  1 .


Таким образом, доверительный интервал, накрывающий с

надежностью (1 ‒ α) неизвестное значение параметра βi, определяется 

неравенством

ii bb i
;nm1;nm1

 S .
2

i 

2

bi  t  S    b  t

Не вдаваясь в детали, отметим, что по аналогии с парной регрессией 

может быть построена интервальная оценка для среднего предсказания

2

0 0

2

0
ˆˆYˆ

Т

0 0 01 02 0m

Т M Y X  (1,x , x ,...,x  Y  t t  S


;nm1


;nm1
Y     SŶ , (2.1)

0
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0

T T 1
где Ŷ 0  b0  b1x01  b2 x02  ... bm x0m ; SŶ0 S X X X  X .



2.3. Анализ качества выборочного уравнения множественной 

линейной регрессии

Как и в случае парной линейной регрессии, 

значимость коэффициентов множественной линейной

статистическая 

регрессии с m

объясняющими переменными проверяется на основе t-статистики t 
bi ,
Sb

i

имеющей в данной ситуации распределение Стьюдента с числом

степеней свободы ν = n ‒ m ‒ 1 (n ‒ объем выборки). При требуемом 

уровне значимости α наблюдаемое значение t-статистики сравнивается с

критической точкой t распределения Стьюдента. Если
2 2

;nm1 ;nm1

t  t , то

2
;nm1

коэффициент bi считается статистически значимым. В противном случае 

( t  t ) коэффициент bi считается статистически незначимым

(статистически близким к нулю). Это означает, что фактор Xi фактически

линейно не связан с зависимой переменной Y. Его наличие среди

объясняющих переменных не оправдано со статистической точки зрения.

Последовательный отсев несущественных факторов составляет основу

многошагового регрессионного анализа. Однако по коэффициентам

регрессии нельзя определить, какой из факторов оказывает наибольшее

влияние на зависимую переменную, так как коэффициенты регрессии

между собой несопоставимы (они измерены разными единицами).

y

Различия в единицах измерения факторов устраняют с помощью частных 

коэффициентов эластичности, рассчитываемых по формуле

xi

i iЭ  b , (2.2)

где xi ‒ среднее значение фактора. Частные коэффициенты эластичности 

показывают, на сколько процентов в среднем изменяется зависимая

переменная с изменением на 1% каждого фактора при фиксированном 

значении других факторов.

После проверки значимости каждого коэффициента регрессии

обычно проверяется общее качество уравнения регрессии. Для этой цели, 

как и в случае парной регрессии, используется коэффициент детерминации

R2 , который в общем случае рассчитывается по формуле
2
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e
R 2  1

 yi  y

 i

2 .



Суть данного коэффициента ‒ доля общего разброса значений

зависимой переменной, объясненного уравнением регрессии. Как

отмечалось ранее 0  R2  1 . Чем ближе этот коэффициент к единице, тем

больше уравнение регрессии объясняет поведение Y. Поэтому естественно

желание построить регрессию с наибольшим R2 . Для множественной

регрессии коэффициент детерминации является неубывающей функцией

числа объясняющих переменных. Добавление новой объясняющей

переменной никогда не уменьшает значение R2 . Для компенсации такого

R2
увеличения вводится скорректированный коэффициент

детерминации с поправкой на число степеней свободы:

n m 1
R 2 1 1 R2  n 1

.

Если увеличение доли объясненной регрессии при добавлении переменной 

мало, то скорректированный коэффициент детерминации может

уменьшиться, следовательно, добавлять переменную нецелесообразно. 

Доказано, что R 2 увеличивается при добавлении новой объясняющей

переменной тогда и только тогда, когда t-статистика для этой переменной 

по модулю больше единицы.

Для определения статистической значимости коэффициента

детерминации R 2 проверяется гипотеза
H 0 : R  0 ,

2

H1 : R  0 .
2

Для проверки данной гипотезы используется статистика:

1 R 2
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R 2 n 2
F  ,

которая, при справедливости H 0 и выполнении предпосылок МНК, имеет

распределение Фишера (F-распределение) с 1  m ,  2  n  m 1 степенями

свободы. Так же, как и в случае парной регрессии, вычисленный критерий

F сравнивается с критическим значением Fкр..



2.4. Мультиколлинеарность

Мультиколлинеарность это коррелированность двух или нескольких

объясняющих переменных в уравнении регрессии. При наличии

мультиколлинеарности МНК-оценки формально существуют, но обладают

рядом недостатков:

1) небольшое изменение исходных данных приводит к существенному

изменению оценок регрессии;

2) оценки, как правило, имеют большие стандартные ошибки, малую

значимость, в то время как модель в целом является значимой

(высокое значение R 2 ).

Если при оценке уравнения регрессии несколько факторов оказались

незначимыми, то нужно выяснить, нет ли среди них сильно

коррелированных между собой. При наличии мультиколлинеарности для

ее устранения или уменьшения имеется ряд методов,

пошаговые процедуры

Например, на первом

переменная, имеющая

отбора наиболее информативных

шаге рассматривается лишь одна

с зависимой переменной Y

в частности

переменных.

объясняющая

наибольший

коэффициент детерминации. На втором шаге включается в регрессию

новая объясняющая переменная, которая вместе с первоначально

отобранной образует пару объясняющих переменных, имеющую с Y

наиболее высокий (скорректированный) коэффициент детерминации. На

третьем шаге вводится в регрессию еще одна объясняющая переменная,

которая вместе с двумя первоначально отобранными образует тройку

объясняющих переменных, имеющую с Y

(скорректированный) коэффициент детерминации, и

наибольший 

т.д. Процедура

введения новых переменных продолжается до тех пор, пока будет

увеличиваться соответствующий (скорректированный) коэффициент

детерминации R 2 . В большинстве случаев получаемые с помощью

пошаговой процедуры наборы переменных оказываются оптимальными

или близкими к оптимальным.

Пример. Используя данные Федеральной службы государственной 

статистики России (за двенадцать месяцев) требуется:

1) Оценить влияние факторов ( Xk , k 1,6 ) на изучаемый показатель

(Y) и друг на друга с помощью коэффициентов линейной 

корреляции.
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2) Используя процедуру выбора факторов, предложить и построить

подходящую линейную регрессионную модель изучаемого

показателя.

3) Дать экономическую интерпретацию с использованием

коэффициентов эластичности. Получить точечные и интервальные

прогнозы изучаемого показателя на следующий месяц.
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Y X1 X2 X3 X4 X5 X6

Июнь 100,6 107,4 106,5 100,6 100,7 100,3 100,9

Июль 102,9 100,3 99,5 100,5 100,3 100,4 100,9

Август 104,4 97 100,6 99,9 99 100,5 100,8

Сентябрь 101,3 106,8 102,2 100,3 99,3 101,1 100,9

Октябрь 103,8 99,1 98,2 100,6 100,4 100,7 100,7

Ноябрь 100,8 101,8 101,8 100,7 100,9 100,6 100,6

Декабрь 117,3 142 125,7 100,8 101,1 100,5 100,8

Январь 

2006г.
75,2 52,1 76,8 102,4 102,0 100,4 106,2

Февраль 100,4 121,9 101 101,7 103,0 100,5 101,0

Март 109,9 108,9 106,2 100,8 101,2 100,4 100,7

Апрель 103 105,5 99 100,4 100,3 100,3 100,6

Май 100 99,1 103,7 100,5 100,5 100,4 100,6

Построим линейную регрессионную модель с использованием всех шести

объясняющих переменных с помощью функции Регрессия (заметим, что

во входной интервал X следует вводить сразу весь набор значений

объясняющих переменных):

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R 0,964746

R-квадрат 0,930735
Нормированный

R-квадрат 0,847618
Стандартная

ошибка 3,785404

Наблюдения 12



Дисперсионный анализ

df

SS

Регрессия 6 962,7403

Остаток 5 71,6464

Итого 11 1034,387

Коэффициенты
Стандартная 

ошибка

t-

статистика

P-

Значение
Нижние 

95%

Верхние 

95%

Y-пересечение 635,5103686 684,2110492 0,928822137 0,395611 -1123,31 2394,331

X1 0,131664673 0,239250121 0,550322286 0,605779 -0,48335 0,746677

X2 0,4591524 0,377586527 1,216019024 0,27825 -0,51146 1,429769

X3 53,11332128 67,25470889 0,789733866 0,465468 -119,77 225,9971

X4 -24,01925153 28,81047116 -0,83369867 0,442444 -98,078 50,04042

X5 -21,09145229 24,61310441 -0,85691962 0,430635 -84,361 42,17855

X6 -13,901573 15,58480592 -0,89199525 0,413259 -53,963 26,16045

Анализируя выходные данные, приходим к выводу, что все коэффициенты 

регрессии незначимы при уровне значимости 0,05 (все Р-значения больше

R 20,05). С другой стороны, высокое значение и значимость уравнения в

целом (F-значение, равное 0,008986, меньше 0,05), указывают на то, что в

модели присутствуют значимые переменные.

1) Для отбора факторов в модель регрессии и оценки их

мультиколлинеарности, найдем матрицу парных коэффициентов

корреляции. Расчет корреляционной матрицы предусмотрен

функцией Корреляция в пакете Анализ данных. Для вызова функции

Корреляция необходимо выбрать команду меню Данные → Анализ

данных. На экране раскроется диалоговое окно Анализ данных, в

котором следует выбрать значение Корреляция. Тогда на экране

появится диалоговое окно Корреляция, представленное на рис. 12.

Рис.12
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Во входной интервал вводим числовые данные всех переменных модели

вместе с буквами, не забыв поставить флажок на метку. Задав выходной

интервал (или оставив по умолчанию новый рабочий лист), получим

матрицу парных коэффициентов корреляции:

Y X1 X2 X3 X4 X5 X6

Y 1

X1 0,896244 1

X2 0,913353 0,929783 1

X3 -0,65744 -0,41067 -0,49785 1

X4 -0,2807 0,014257 -0,1398 0,852351 1

X5 0,079024 0,074599 0,045947 -0,21036 0,38206 1

X6 -0,8566 -0,76876 -0,72354 0,801879 0,38871 0,12163 1

Анализируя 

существенное 

( rY ,X 2  0,91 ),

вышеуказанную матрицу, замечаем, что наиболее 

влияние на фактор Y оказывают переменные X2

( rY ,X1  0,896 ), ( rY ,X 6  0,857 ).X1 X6 Кроме этого,

существует тесная корреляционная связь между переменными X1 и X2

( rX1,X 2  0,93), X3 и X6 ( rX 3, X 6  0,802 ), X3 и X4 ( rX 3, X 4  0,852). Поэтому при

построении регрессии с использованием всех объясняющих переменных

будет иметь место мультиколлинеарность. Для устранения

мультиколлинеарности применим процедуру пошагового отбора наиболее

информативных переменных.

2) 1-й шаг. Из объясняющих переменных X1 ‒ X6 выделяется

переменная X2, имеющая с зависимой переменной Y наибольший

коэффициент детерминации Y , j
R2

(равный для парной модели

квадрату коэффициента корреляции r 2 ). Воспользуемся функциейY , j

Регрессия для получения парной регрессии с участием переменных

Ограничимся при этом выводом РегрессионнойY и X2.

статистики:

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R 0,913353

R-квадрат 0,834213

Нормированный R-
квадрат 0,817635

Стандартная ошибка 4,141107

Наблюдения 12
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Скорректированный коэффициент детерминации равен 0,818.

2-й шаг. Среди всевозможных пар объясняющих переменных X2,

Xj, j = 1, 3, 4, 5, 6, выбирается пара (X2, X6), имеющая с зависимой

переменной Y наиболее высокий скорректированный коэффициент

детерминации, равный 0,896. Результаты расчетов приводятся ниже.

X2,X1 X2,X3 X2,X4
ВЫВОД ИТОГОВ ВЫВОД ИТОГОВ ВЫВОД ИТОГОВ

Регрессионная статистика Регрессионная статистика Регрессионная статистика

Множественный R 0,922243 Множественный R 0,942792 Множественный R 0,926332

R-квадрат 0,850532 R-квадрат 0,888857 R-квадрат 0,858091

Нормированный
R-квадрат 0,817317

Нормированный
R-квадрат 0,864158

Нормированный
R-квадрат 0,826556

Стандартная
ошибка 4,144712

Стандартная
ошибка 3,574056

Стандартная
ошибка 4,038544

Наблюдения 12 Наблюдения 12 Наблюдения 12

X2,X6 X2,X5
ВЫВОД ИТОГОВ ВЫВОД ИТОГОВ

Регрессионная статистика Регрессионная статистика

Множественный R 0,956363 Множественный R 0,914106

R-квадрат 0,91463 R-квадрат 0,835589

Нормированный R-
квадрат 0,895659

Нормированный R-
квадрат 0,799054

Стандартная ошибка 3,13236 Стандартная ошибка 4,346955

Наблюдения 12 Наблюдения 12

3-й шаг. Среди всевозможных троек объясняющих переменных 

(X2, X6, Xj), j = 1, 3, 4, 5, наиболее информативной оказалась тройка 

(X2, X6, X4), имеющая максимальный скорректированный коэффициент 

детерминации, равный 0,885. Результаты расчетов:

X1,X2,X6 X2,X3,X6
ВЫВОД ИТОГОВ ВЫВОД ИТОГОВ

Регрессионная статистика Регрессионная статистика

Множественный R 0,956621 Множественный R 0,957054

R-квадрат 0,915125 R-квадрат 0,915953

Нормированный R-
квадрат 0,883296

Нормированный R-
квадрат 0,884435

Стандартная ошибка 3,31274 Стандартная ошибка 3,296542

Наблюдения 12 Наблюдения 12
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X2,X4,X6 X2,X5,X6
ВЫВОД ИТОГОВ ВЫВОД ИТОГОВ

Регрессионная статистика Регрессионная статистика

Множественный R 0,957151 Множественный R 0,956363

R-квадрат 0,916138 R-квадрат 0,914631

Нормированный R-
квадрат 0,884689

Нормированный R-
квадрат 0,882618

Стандартная ошибка 3,292908 Стандартная ошибка 3,322358

Наблюдения 12 Наблюдения 12

Так как скорректированный коэффициент детерминации на 3-м шаге не

увеличился, то в регрессионной модели достаточно ограничиться лишь

двумя отобранными ранее объясняющими переменными X2 и X6.

Построим эту линейную регрессионную модель с помощью функции

Регрессия:

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R 0,956363154

R-квадрат 0,914630482

Нормированный R-

квадрат 0,895659478

Стандартная ошибка 3,132359619

Наблюдения 12

Дисперсионный анализ

df SS MS F
Значимость 

F

Регрессия 2 946,0816 473,0408 48,21202 1,55E-05

Остаток 9 88,30509 9,811677

Итого 11 1034,387

Коэффициенты
Стандартная 

ошибка
t-статистика

P-

Значение
Нижние 

95%

Верхние 

95%

Y-
пересечение

302,8787507 98,34281602 3,079825888 0,013144 80,41184 525,3457

X2 0,556121622 0,127354024 4,36673772 0,001806 0,268027 0,844216
X6 -2,547239382 0,874833084 -2,91168615 0,017264 -4,52625 -0,56823

Оцененное уравнение имеет вид:

ŷ  302,879  0,556x2  2,547x6 .

Нетрудно убедиться в том, что теперь все коэффициенты регрессии

значимы при уровне значимости 0,05 (все Р-значения меньше 0,05).



Кроме рассмотренной выше пошаговой процедуры присоединения

объясняющих переменных используются также пошаговые процедуры

присоединения ‒ удаления и процедура удаления объясняющих

переменных, изложенные, например, в [5]. Следует отметить, что какая бы

пошаговая процедура ни использовалась, она не гарантирует определения

оптимального (в смысле получения максимального коэффициента

детерминации) набора объясняющих переменных. Однако в большинстве

случаев получаемые с помощью пошаговых процедур наборы переменных

оказываются оптимальными или близкими к оптимальным.

3) Дадим экономическую интерпретацию найденного уравнения с

использованием коэффициентов эластичности.

Согласно формулам (2.2)
y

x
i

i iЭ  b . По условию x2  101,767 , x6 101,223,

y  101,663 . Тогда
101,663 101,663
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2 6
Э  0,556 

101,767
 0,557 ; Э  2,547 

101,223
 2,536 .

Коэффициент Э2  0,557 означает, что при увеличении реальной заработной

платы на 1% оборот розничной торговли непродовольственными товарами

вырастет в среднем на 0,557%. Коэффициент Э6  2,536 означает, что при

увеличении индексов цен платных услуг населению на 1% оборот

розничной торговли непродовольственными товарами упадет в среднем на

2,536%.

Получим теперь точечные и интервальные прогнозы изучаемого

показателя на следующий месяц, если реальная заработная плата в июне

предполагается на уровне 108%, а индексы цен платных услуг населению

на уровне 100,7% по отношению к майским показателям. Подставив

указанные значения в полученное уравнение, получим точечную оценку

среднего оборота розничной торговли непродовольственными товарами в

июне:

ŷ  302,879  0,556108 2,547 100,7 106,44 .

Для построения интервальной оценки изучаемого показателя

воспользуемся формулой (2.1). Для наглядности приведем ряд

промежуточных результатов:
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X 


108


; X  X  1221,2T


125547 123480,2 ;



0,008 0,078 

 8,732





  8,732

985,694  0,999


0,002 0,008 ;
1X  X    0,999T

0 0

1T TX X  X   X  0,115 .

При расчетах были использованы математические функции пакета

Мастера функций Excel (категория математические) МУМНОЖ

(возвращает матричное произведение двух массивов) и

(возвращает обратную матрицу). В результате вычислений

МОБР

имеем:

0SŶ 3,132  0,115 1,062 . Из таблиц критических точек распределения

Стьюдента (см. также Excel ‒ fx ‒ статистические – стьюдент.обр.2х)

2 2

 t 0,05
;n2 ;1221

находим: t  2,262 . Подставив эти значения в формулу (2.1),

получим 95%-ный доверительный интервал для прогнозного среднего 

значения результативного признака Y при X2 = 108, X6 = 100,7:

0

Т
Т106,44 2,262 1,062  MY X  (1;108;100,7 106,44 2,262 1,062 ,

0
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Т
Т104,038 MY X  (1,108;100,7 108,842 .

Основываясь на выборочных данных, можно утверждать, что средний

оборот розничной торговли непродовольственными товарами в июне будет

находиться в найденном доверительном интервале с вероятностью 0,95.


