МГТУ им. Н.Э.Баумана. Кафедра ЭВМ и С.

Старший преподаватель кафедры ИУ6 Аристов Б.К.

Методические указания к лабораторной работе по курсу «Микроэлектроника и микропроцессорные системы" для студентов специальности «Метрология и взаимозаменяемость». Обработка данных в микроконтроллерах с ядром ARM Cortex M3.

Лабораторная работа №2

Лабораторная работа №2.

Обработка данных в микроконтроллерах с ядром ARM Cortex M3.

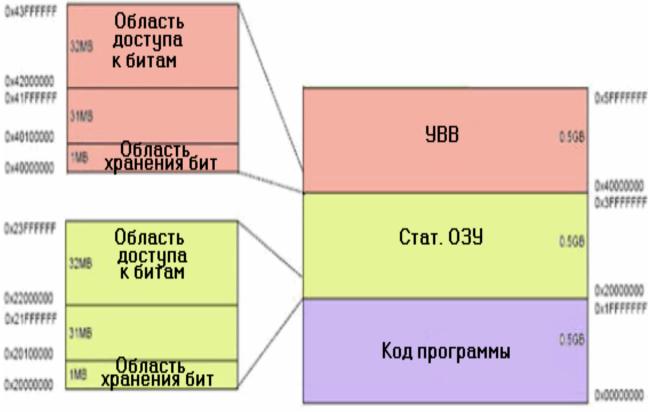
Цель работы – составление программ обработки данных для микроконтроллеров с ядром ARM Cortex M3. Продолжительность работы— 4 академических часа.

Задание:

- 1. Составить программу обработки данных согласно варианту из таблицы 1 Программу составить на языке «Ассемблер» для микроконтроллера ARM Cortex M3. Вывод результата произвести в указанный в задании порт Pn.
- 2. Отладить программу, используя программу Keil µVision.
- 3. Выполнить составленную программу в пошаговом режиме работа. Дать объяснение результатам выполнения каждой арифметической команды и состоянию регистра xPSR.
- 4. Составить отчет.
- 56. Защитить работу.

Таблица 1.

		таолица т.		
№ варианта	Порты вывода	Алгоритм программы		
1	PORTC	Преобразовать числа находящиеся в РПД по следующему алгоритму: во всех числах выделить 3, 4 и 7 разряды. Преобразованные числа поместить на прежнее место. Подсчитать сумму преобразованных чисел. Начальный адрес в РПД – 20Н. Количество чисел – 10.		
2	PORTA	Преобразовать числа находящиеся в РПД по адресам 15H – 24H по следующему алгоритму: установить во всех числах 7 и 1 разряды равными «0», а 6 разряд равным «1». Преобразованные числа поместить на прежнее место. Подсчитать сумму преобразованных чисел.		
3	PORTB	Числа, находящиеся в РПД по адресам 21H – 30H циклически сдвинуть вправо на 2 разряда и записать в РПД на прежнее место. Подсчитать сумму преобразованных чисел.		
4	POPTC	Содержимое РПД, начиная с адреса 21Н передать в банк 2. Числа во 2-ом банке циклически сдвинуть на один разряд влево. Подсчитать сумму преобразованных чисел.		
5	PORTA	Содержимое 1-ого банка регистров сдвинуть на 1 разряд вправо и поместить в РПД, начиная с адреса 31H. Подсчитать сумму преобразованных чисел.		
6	PORTB	Содержимое 2-ого банка регистров переписать в РПД, начиная с адреса 25Н. Все числа сдвинуть на 2 разряда влево, а затем увеличить их на 1. Подсчитать сумму преобразованных чисел.		
7	PORTC	Преобразовать числа находящиеся в РПД по адресам 20H-33H по следующему алгоритму: разделить все числа на 2 и частное от деления поместить в РПД, начиная с адреса 40H. Подсчитать сумму преобразованных чисел.		

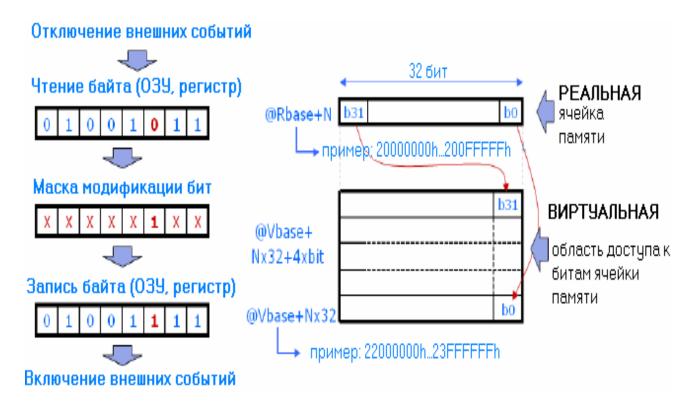

№ варианта	Порты вывода	Алгоритм программы		
8	PORTA	Преобразовать числа, находящиеся в РПД по следующему алгоритму: все числа умножить на 3, а затем выделить в них 3, 5 и 7 разряды. Числовой материал расположен в РПД по адресам с 31H по 40H. Подсчитать сумму последних шести преобразованных чисел.		
9	PORTB	Преобразовать числа, находящиеся в РПД по адресам 20H-2FH следующим образом: установить 8, 6 и 4 разряды равными «0», а затем каждое число умножить на 2. Подсчитать сумму преобразованных чисел.		
10	PORTC	Числа, находящиеся в РПД по адресам 32H-41H циклически сдвинуть на 1 разряд вправо, разделить на 4 и записать в РПД на прежнее место. Подсчитать сумму преобразованных чисел.		
11	PORTA	Числа, находящиеся в РПД по адресам 20H-2FH сдвинуть вправо на два разряда и увеличить на три. Преобразованные данные поместить на прежнее место. Подсчитать произведение полученных чисел.		
12	PORTB	Преобразовать числа, находящиеся в РПД по адресам 25H-34H по следующему алгоритму: умножить все числа на два, поместить их в РПД по адресам 35H-44H. Посчитать сумму первых пяти преобразованных чисел.		
13	PORTC	В числах, расположенных в РПД по адресам 20H-3FH выделить 4, 5 и 7 разряды. К каждому числу добавить единицу. Подсчитать сумму последних четырех преобразованных чисел.		
14	PORTA	Преобразовать числа, находящиеся в РПД по адресам 23H-30H по следующему алгоритму: если в седьмом разряде каждого числа находится ноль, то к этому числу добавляется единица, в противном случае из этого числа вычитается единица. Подсчитать сумму первых пяти чисел.		
15	PORTB	Преобразовать числа находящиеся в РПД по адресам 23H-33H по следующему алгоритму: разделить все числа на 2 и частное от деления поместить в РПД, начиная с адреса 40H. Подсчитать сумму преобразованных чисел, расположенных по четным адресам.		
16	PORTC	Числа, находящиеся в РПД по адресам 20H – 30H циклически сдвинуть вправо на 2 разряда и записать в РПД на прежнее место. Подсчитать сумму преобразованных чисел, расположенных по нечетным адресам.		
17	PORTA	Преобразовать числа находящиеся в РПД по следующему алгоритму: во всех числах выделить 3, 4 и 0 разряды. Преобразованные числа поместить на прежнее место. Начальный адрес в РПД – 32Н. Количество чисел – 10. Подсчитать сумму четных преобразованных чисел.		
18	PORTB	Преобразовать числа, находящиеся в РПД по адресам 20H-2FH следующим образом: установить 0, 1 и 4 разряды равными «0», а затем каждое число умножить на 2. Подсчитать сумму нечетных преобразованных чисел.		

№ варианта	Порты вывода	Алгоритм программы		
19	PORTC	Преобразовать числа находящиеся в РПД по адресам 22H–31H по следующему алгоритму: установить во всех числах 5 и 2 разряды равными «0», а 6 разряд равным «1». Преобразованные числа поместить на прежнее место. Подсчитать сумму последних шести преобразованных чисел.		
20	PORTA	Преобразовать числа, находящиеся в РПД по следующему алгоритму: все числа умножить на 5, а затем выделить в них 0, 2 и 5 разряды. Числовой материал расположен в РПД по адресам с 31H по 40H. Подсчитать сумму преобразованных чисел.		
21	PORTB	Преобразовать числа находящиеся в РПД по адресам 22H-34H по следующему алгоритму: разделить все числа на 2 и частное от деления поместить в РПД, начиная с адреса 34H. Подсчитать сумму последних трех преобразованных чисел.		
22	PORTC	Преобразовать числа, находящиеся в РПД по адресам 23H-30H по следующему алгоритму: если во втором разряде каждого числа находится ноль, то к этому числу добавляется единица, в противном случае из этого числа вычитается единица. Подсчитать сумму первых шести преобразованных чисел.		

Примечание: начальный адрес РПД - 0х20000000 (Статическое ОЗУ). В задании указано смещение относительно этого адреса.

Приложение №1.

Карта памяти МК ARM Cortex M3 для периферийных устройств и памяти данных.


Приложение № 2. Адреса портов МК STM32L15x

0x4002	3000	
		RCC
0x4002	3800	reserved
0x4002	3400	CRC
0x4002	3000	
0x4002	1800	reserved
0x4002	1400	Port H
0x4002	1000	Port E
0x4002	0000	Port D
0x4002	0800	Port C
0x4002	0400	Port B
0x4002	0000	Port A
		reserved
0x4001	3C00	USART1
0x4001	3800	
0x4001	3400	reserved
0x4001	3000	SPI1
		reserved
0x4001	2800	ADC
0x4001	2400	
0x4001	1400	reserve d
		TIM11
0x4001	1000	TIM10
0x4001	0C00	TIM9
0x4001	0800	TIMB

Приложение № 3.

Метод Bit banding.

В МК Cortex M3 имеются отдельные инструкции сброса и установки бит . Метод, называемый bit banding, позволяет напрямую воздействовать на биты в памяти из областей УВВ и статического ОЗУ, не используя при этом каких-либо специальных инструкций. Битноадресуемые области карты памяти Cortex разделены на две части: область хранения бит (в нее входят до 1 Мбайт физической памяти или регистров УВВ) и область доступа к битам, которая занимает до 32 Мбайт карты памяти. Получить доступ к каждому отдельному биту из области хранения бит можно по соответствующему адресу слова из области доступа к битам. Если выполнять запись по адресу в область доступа к битам на самом деле мы будем воздействовать на значение определенного бита в физической памяти.

Необходимо вычислить адрес слова в области доступа к битам, который соответствует заданной ячейки памяти из области УВВ или статического ОЗУ. Выполняется это по следующей формуле:

Адрес в области доступа к битам = Базовый адрес области доступа к битам + Смещение адреса слова доступа к биту.

Смещение адреса слова доступа к биту = Смещение в байтах по отношению базовому адресу области хранения бит * 0x20 + номер бита * 4

Необходимо выполнить запись в выходной регистр порта вводавывода (ПВВ) для установки или сброса отдельных линий ввода-вывода. Физический адрес выходного регистра порта В - 0х40010С0С. Предположим, что нужно устанавливать и сбрасывать бит 8 этого регистра. Воспользуемся приведенной выше формулой:

Адрес слова = 0х40020414

Базовый адрес области хранения бит УВВ = 0х40000000

Базовый адрес области доступа к битам УВВ = 0х42000000

Смещение в байтах по отношению базовому адресу области хранения бит = 0x40020414 - 0x40000000 = 0x20414

Смещение адреса слова доступа к биту = (0x20414 * 0x20) +(8*4) = 0x4082A0

Адрес в области доступа к битам = 0x42000000 + 0x4082A0 = 0x424082A0.

Приложение № 4.

Системы тактирования (модуль Reset and clock control (RCC)).

Имя	Адрес	Назначение
регистра	регистра	
CR	0x40023800	Регистр контроля тактовых сигналов.
ICSCR	0x40023804	Внутренний регистр калибровки внутреннего генератора.
CFGR	0x40023808	Регистр конфигурации тактовых сигналов.
CIR	0x4002380C	Регистр частоты внешних прерыаний.

AHBRSTR	0x40023810	Регистр сброса периферийных устройств,	
		подключенных к шине АНВ.	
APB2RSTR	0x40023814	Регистр сброса периферийных устройств,	
		подключенных к шине APB2.	
APB1RSTR	PB1RSTR 0х40023818 Регистр сброса периферийных устройств,		
		подключенных к шине АРВ1.	
AHBENR	0x4002381C	Разрешает подачу тактовых импульсов на	
		шину АНВ.	
APB2ENR	0x40023820	820 Разрешение тактирования периферийных	
		устройств, подключенных к шине APB2.	
APB1ENR	PB1ENR 0х40023824 Разрешение тактирования периферийн		
		устройств, подключенных к шине APB1.	
AHBLPENR	0x40023828	Регстр включения тактовых сигналов на шину	
		AHB.	
APB2LPENR	0x4002382C		
APB1LPENR	0x40023830		
CSR	0x40023834	Регистр статуса/контроля.	

Приложение № 5. Программирование портов GPIO.

Имя регистра	Адрес	Назначение	
MODERN	0x40020000	Port mode register	
OTYPER	0x40020004	Выбор схемы вывода в	
		порт.	
OSPEEDEK	0x40020008	В этом регистре	
		указывается скорость	
		вывода.	
PUPDR	0x4002000C	Указывается способ	
		подключения выходного	
		каскада порта - с	
		подтяжкой к потенциалу	
		"земли" или к напряжению	
		питания.	
IDR	0x40020010	Входной регистр порта.	
ODR	0x40020014	Выходной регистр порта.	
BSRR	0x40020018	Регистр сброса/установки	
		бит порта.	
LCKR	0x4002001C	Регистр - защелка	
		конфигурации порта.	
AFRL	0x40020020	Указатель альтернативных	
		функций порта (старшие	
		разряды 16 - 31).	
AFRH	0x40020024	Указатель альтернативных	
		функций порта (младшие	
		разряды 0 - 15).	

- 1. П.П. Редькин. 32/16-битные микроконтроллеры ARM7 семейства AT91SAM7 фирмы ATMEL. Руководство пользователя. Москва, издательский дом «Додека XXI». 2008.
- 2. Б. Пахомов. C/C++ и MS Visual C++ 2008 для начинающих. Санкт-Петербург, «БХВ-Петербург» 2009.
- 3. Joseph Yiu. The Defi nitive Guide to the ARM Cortex-M3.