

Московский государственный технический университет имени Н.Э. Баумана

Методические указания

А.Ю. Попов

Лабораторная работа №2

Проектирование цифровых устройств на основе ПЛИС

Москва 2014

Цель работы: закрепление на практике теоретических сведений, полученных при изучении методики проектирования цифровых устройств на основе программируемых логических интегральных схем (ПЛИС), получение необходимых навыков работы с системой автоматизированного проектирования ISE WebPack 9.1 устройств на основе ПЛИС фирмы Xilinx, изучение аппаратных и программных средств моделирования, макетирования и отладки устройств на основе ПЛИС.

Для выполнения работы студенту необходимо ознакомиться с архитектурой ПЛИС FPGA Spartan 3 производства фирмы Xilinx, изучить методику проектирования устройств на основе ПЛИС с использованием САПР ISE WebPack 9.1, спроектировать и реализовать с помощью набора XC3S200 (или набора Nexys2 на основе ПЛИС XC3E-500) устройство управления счетом и индикацией состояния 16-разрядного счетчика.

Описание проектируемого устройства

В данной лабораторной работе осваивается методика проектирования цифровых устройств на примере разработки и реализации на ПЛИС схемы управления счетом и индикацией состояния 16-разрядного счетчика. Отладка устройства производится с помощью набора XC3S200 (или набора Nexys2 на основе ПЛИС XC3E-500 с аналогичными функциями), который содержит матрицу 7-сегментных индикаторов и кнопки, необходимые для управления разрабатываемым устройством. Выбор набора (XC3S200 или Nexys2) определяется в соответствии с вариантом в таблице 1 (см. далее). Состав устройства и назначение используемых ресурсов отладочного набора XC3S200 показаны на рисунке 1 (набор Nexys2 содержит аналогичные ресурсы).

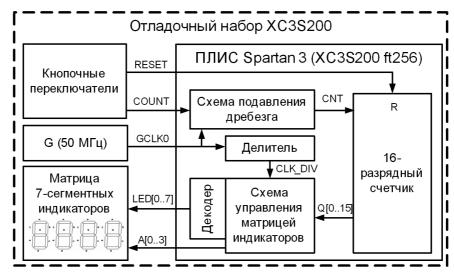


Рисунок 1 – Использование отладочного набора XC3S200 для реализации схемы управления и индикацией 16-ти разрядного счетчика

В устройстве используется синхронный 16-разрядный счетчик с асинхронным сбросом. Для управления счетом и сбросом используются две кнопки, входящие в состав отладочного набора (линии RESET и COUNT). При этом учитывается, что подача внешнего сигнала управления счетом COUNT непосредственно на вход синхронизации счетчика привела бы к многочисленным ложным срабатываниям из-за наличия дребезга при замыкании и размыкании кнопки. Для устранения этого в работе используется схема подавления дребезга, выдающая на счетчик сигнал CNT.

Состояние 16-разрядного счетчика передается на схему управления матрицей индикаторов, которая обеспечивает мультиплексированную передачу тетрад данных на декодер 7-сегментого кода, а также сопровождает выдачу данных сигналами управления анодами (A[0..3]). На выходе декодера формируется код активизации сегментов (LED[0..7]), передаваемый непосредственно на 4 индикатора, входящие в состав отладочного набора. Делитель частоты должен выдавать сигнал синхронизации CLK_DIV низкой частоты (100-200 Гц) на схему управления матрицей индикаторов.

Разработка схемы подавления дребезга

Схема подавления дребезга представляет собой автомат, воспринимающий входной сигнал COUNT от кнопки и выдающий выходной сигнал CNT в соответствии с приведенной на рисунке 2 диаграммой.

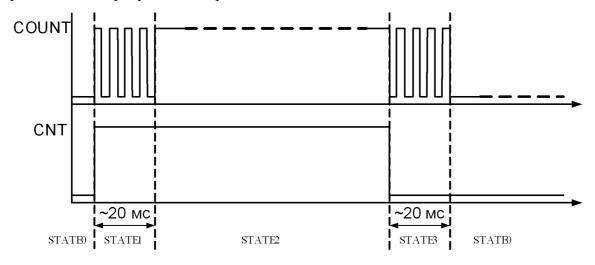


Рисунок 2 – Диаграмма работы схемы подавления дребезга

Кнопки, имеющиеся в наличие на плате XC3S200 или Nexys2, обладают дребезгом и не снабжены схемами их подавления (триггерами Шмидта и т.д.). Как при нажатии, так и при отпускании кнопки происходит многократное изменение уровня напряжения на линии COUNT, вызванное упругими соударениями. Для предотвращения

нежелательных многократных срабатываний устройств, следует построить схему, исключающую возможность прохождения сигналов в момент дребезга. Это можно осуществить с помощью дополнительного счетчика, исполняющего роль схемы задержки на длительность переходных процессов. При подаче на вход данного счетчика сигнала отладочного набора GCLKO, имеющего частоту 50 МГц, в качестве информационного сигнала окончания счета может быть использовано значение двадцатого разряда счетчика(Q[20]). Разрешение работы счетчика задается высоким уровнем сигнала CNT_EN. После окончания счета необходимо выполнить сброс счетчика в исходное нулевое состояние сигналом CNT_CLR.

Автомат, реализующий указанную логику работы, может находиться в одном из четырех состояний: ожидания нажатия (STATE0), счет времени после нажатии (STATE1), ожидание отпускания (STATE2), счет времени после отпускания (STATE3). Диаграмма переходов состояния показана на рисунке 3.

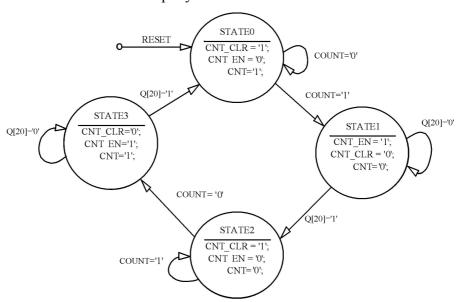


Рисунок 3 – Диаграмма состояния автомата подавления дребезга

Задание 1. Выполнить кодирование состояний автомата, представленного на рисунке 3, в соответствии с индивидуальным вариантом из таблицы 1. Для этого заполнить таблицу 2.

Таблина 1 -	- Индивидуальные варианты коди	повяния состояний явтомятя
т аолица т	HIIIAHDHA (AMBIIDIC DADHAII I DI KOAH	pobanna cocionnan abiomaia

Вариант:	Набор	Двоичный код состояния ($\mathbf{Q}_1\mathbf{Q}_0$)				
		State0	State1	State2	State3	
1	XC3S200	00	01	10	11	
2	XC3S200	00	01	11	10	
3	Nexys 2	00	10	01	11	

Вариант:	Набор	Двоичный код состояния (Q₁Q₀)					
		State0	State1	State2	State3		
4	XC3S200	00	10	11	01		
5	XC3S200	00	11	10	01		
6	Nexys 2	00	11	01	10		
7	XC3S200	01	00	10	11		
8	XC3S200	01	00	11	10		
9	Nexys 2	01	10	00	11		
10	XC3S200	01	10	11	00		
11	XC3S200	01	11	00	10		
12	Nexys 2	01	11	10	00		
13	XC3S200	10	00	01	11		
14	XC3S200	10	00	11	01		
15	Nexys 2	10	01	00	11		
16	XC3S200	10	01	11	00		
17	XC3S200	10	11	00	01		
18	Nexys 2	10	11	01	00		
19	XC3S200	11	00	01	10		
20	XC3S200	11	00	10	01		
21	Nexys 2	11	01	00	10		
22	XC3S200	11	01	10	00		
23	XC3S200	11	10	00	01		
24	Nexys 2	11	10	01	00		

По таблице выходов 2 определить функции сигналов управления: CNT = f(Q1,Q0), CNT_EN = f(Q1,Q0), CNT_CLR = f(Q1,Q0). Результаты занести в отчет.

Таблица 2 – Таблица выходов

Состояние	State0	State1	State2	State3
Двоичный код состояния (Q1Q0)				
CNT	0	1	1	0
CNT_EN	0	1	0	1
CNT_CLR	1	0	1	0

Синтезировать схему автомата с использованием динамических синхронных Dтриггеров с асинхронным сбросом и установкой (элементы FDC и FDP библиотеки) и шестнадцатиразрядных счетчиков (элемент CR16CE), управляемых фронтом сигнала синхронизации СLК. Для определения функций D0=f(Q[20],COUNT,Q1,Q0) и D1=f(Q[20],COUNT,Q1,Q0) заполнить таблицу 3. Результаты занести в отчет.

Таблица 3 – Сигналы D1 и D2

COUNT	Q[20]	Q1(t)	Q0(t)	Q1(t+1)	Q0(t+1)	D1	D0	Описание события
0	X							Ожидание нажатия кнопки
1	X							Нажатие кнопки
х	0							Ожидание окончания счета
X	1							Конец счета
1	X							Ожидание отпускания
0	X							Отпускание кнопки
х	0							Ожидание окончания счета
х	1							Конец счета

Задание 2. Собрать модель полученного устройства в редакторе схем САПР ISE WebPack 9.1. Для этого выполнить следующие действия:

- Запустить САПР ISE WebPack 9.1.
- В меню File выбрать пункт New Project.
- Указать название и путь к файлу создаваемого проекта.
- Указать тип модуля верхнего уровня: Schematic. Нажать кнопку Next.
- В поле Product Category указать: All.
- В поле Family указать: Spartan3 для набора XC3S200 или Spartan3E для набора Nexys2.
- В поле Device указать: XC3S200 для набора XC3S200 или XC3E500 для набора Nexys2.
- В поле Package указать: FT256 для набора XC3S200 или FG320 для набора Nexys2.
- В поле Speed указать: -5.
- В поле Synthesis Tool указать: XST(VHDL/Verilog).
- В поле Simulator указать: ISE Simulator (VHDL/Verilog).
- В поле Preferred Language: VHDL. Трижды нажать кнопку Next, Нажать кнопку Finish.

• Создать новое схемотехническое описание проекта, выбрав в меню Project пункт New Source. Далее выбрать тип описания (Schematic) и указать имя и путь к создаваемому файлу описания. Нажать кнопки Next и Finish.

В итоге будет создан и открыт для редактирования файл схемотехнического описания. Для описания схемы необходимо поместить на рабочее поле компоненты, выбрав их во вкладке Symbols окна Sources. В данном задании потребуются компоненты FDC, FDP, CR16CE, AND, OR, VCC, GND.

Соединение компонентов выполняется с помощью цепей и шин. Для создания цепи или шины необходимо над рабочим полем вызвать контекстное меню с помощью правой кнопки мыши. Далее, в контекстном меню выбрать пункт Add и подпункт Wire. Если порт компонента является шиной, то цепь также будет иметь такой тип.

Для подключения цепи или группы цепей к существующей шине используется разветвитель Виз Тар. Для его добавления в контекстном меню выбрать пункты Add и Виз Тар, после чего необходимо поместить разветвитель на шине. Указание соответствия цепей в шине с цепями, подведенными к разветвителю, выполняется с помощью имен. Например, если шина носит имя XLXN_1(15:0), то для выбора старшей цепи следует назвать подведенную к разветвителю цепь, как XLXN_1(15). Порты схемы подключаются к цепям с помощью компонента I/O Marker. Для этого в контекстном меню необходимо выбрать пункты Add и I/O Marker.

Задание 3. В интегрированном редакторе тестов САПР ISE WebPack 9.1 разработать тест для полученного устройства и выполнить моделирование его работы в ISE Simulator.

Для этого необходимо создать новое описание теста проекта, выбрав в меню Project пункт New Source. Далее выбрать тип описания (Test Bench WaveForm) и указать имя и путь к создаваемому файлу теста. Далее нажать на кнопку Next и в открывшемся диалоге выбрать тестируемое описание, после чего нажать на кнопки Next и Finish. В результате будет создан файл графического тестового воздействия для выбранного описания и будет вызван диалог его настройки. В этом диалоге необходимо указать сигнал синхронизации (например, CLK) и время тестирования в поле Initial Length of Test Bench (остальные параметры можно оставить неизменными).

После создания теста и его сохранения можно приступать к моделированию, для чего активизировать вкладку Sources в окне Sources. В выпадающем списке Sources For выбрать строку Behavioral Simulation и выбрать запускаемый тест в дереве описаний

проекта. После этого во вкладке Processes окна Processes выбрать пункт Xilinx ISE Simulator и пункт Simulate Behavioral Model.

Схему устройства и результаты моделирования занести в отчет.

Разработка схемы управления 7-сегментными индикаторами

Для индикации информационных сигналов большой разрядности при отладке устройств с помощью набора XC3S200 или набора Nexys2 целесообразно использовать имеющиеся четыре 7-сегментных индикатора. Управление их работой осуществляется благодаря подаче восьми общих сигналов управления сегментами одновременно с установкой в активный низкий уровень сигнала выборки анода А[0..3]. Таким образом, состояние линий LED должно устанавливаться схемой управления в соответствии с активным в данный момент 7-сегментным индикатором. Диаграмма работы устройства управления четырьмя 7-сегментными индикаторами показана на рисунке 4. Четыре тетрады сигналов данных (Q[0..3], Q[4..7], Q[8..11], Q[12..15]) должны быть преобразованы в код активизации индикаторов с помощью декодера. Темп активизации индикаторов должен обеспечивать отсутствие видимого мерцания сегментов (100-200 Гц). Для задания частоты активизации CLK DIV целесообразно использовать дополнительный 16-разрядный счетчик – делитель частоты СВ16СЕ, соединенный по CEO с буфером разрешения синхросигнала BUFGCE (период активизации четырех индикаторов должен составлять от 1 до 16 мс, частота от 1КHz до 60 Hz).

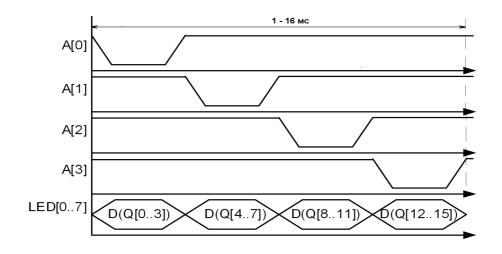


Рисунок 4 – Диаграмма работы устройства управления четырьмя 7-сегментными индикаторами

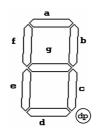


Рисунок 5 - Назначение сегментов индикатора

преобразования четырех информационных сигналов В код активизации светодиодов восьми используется табличное перекодирование, реализуемое программой LUТ-таблиц. синтеза при помощи Расположение сегментов индикатора показано на рисунке 5, а коды их активизации для различных значений входного четырехразрядного слова D[0..3] указаны в таблице 4 (нулевой разряд означает активизацию сегмента; сегмент DP не активизируется).

Таблица 4 – Значения информационных входов активизации сегментов 7-сегментного индикатора для возможных значений информационного слова D[0..3]

D[03]	DP	A	В	С	D	E	F	G
0000	1	0	0	0	0	0	0	1
0001	1	1	0	0	1	1	1	1
0010	1	0	0	1	0	0	1	0
0011	1	0	0	0	0	1	1	0
0100	1	1	0	0	1	1	0	0
0101	1	0	1	0	0	1	0	0
0110	1	0	1	0	0	0	0	0
0111	1	0	0	0	1	1	1	1
1000	1	0	0	0	0	0	0	0
1001	1	0	0	0	0	1	0	0
1010	1	0	0	0	1	0	0	0
1011	1	1	1	0	0	0	0	0
1100	1	0	1	1	0	0	0	1
1101	1	1	0	0	0	0	1	0
1110	1	0	1	1	0	0	0	0
1111	1	0	1	1	1	0	0	0

Задание 4. Разработать устройство управления, принимающее 16-разрядное информационное слово Q[0..15] и управляющее их последовательной выдачей по шине D[0..3] на декодер 7-сегментных индикаторов в соответствии с показанной на рисунке 4 диаграммой. Для этого создать файл VHDL, содержащий следующий текст описания:

```
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
USE ieee.std logic arith.ALL;
ENTITY Seven Segment Driver IS
  PORT (
clk_div : IN std_logic;
Q : IN std_logic_vector(15 DOWNTO 0);
rst : IN std_logic;
D : OUT std_logic_vector(3 DOWNTO 0);
A : INOUT std_logic_vector(3 DOWNTO 0));
END ENTITY Seven Segment Driver;
ARCHITECTURE Struct OF Seven Segment Driver IS
A drive: PROCESS (clk div, rst)
BEGIN
  IF (rst = '1') THEN
     A<="1110";
  ELSIF (clk div'EVENT AND clk div='1') THEN
     A(3) \le A(2);
     A(2) \le A(1);
     A(1) \le A(0);
     A(0) \le A(3);
  END IF;
END PROCESS A drive;
D(0) \ll Q(0) AND NOT (A(0))
              OR (Q(4) AND NOT(A(1))
              OR (Q(8) AND NOT(A(2))
              OR (Q(12) \text{ AND NOT}(A(3)));
D(1) \le (Q(1) \text{ AND NOT}(A(0)))
              OR (Q(5) AND NOT(A(1))
              OR (Q(9) AND NOT(A(2))
              OR (Q(13) \text{ AND NOT}(A(3)));
D(2) \le (Q(2) \text{ AND NOT}(A(0)))
              OR (Q(6) AND NOT(A(1))
              OR (Q(10) \text{ AND NOT}(A(2)))
              OR (Q(14) \text{ AND NOT}(A(3)));
D(3) \le (Q(3) \text{ AND NOT}(A(0)))
              OR (Q(7) AND NOT(A(1))
              OR (Q(11) AND NOT(A(2))
              OR (Q(15) AND NOT(A(3)));
END ARCHITECTURE Struct;
```

В интегрированном редакторе тестов CAПР ISE WebPack 9.1 разработать тест для полученного устройства и выполнить моделирование его работы в ISE Simulator. Описание устройства и результаты моделирования занести в отчет. Подключить устройство к текущему проекту, выбрав в меню Project пункт Add Source.

Задание 5. Разработать поведенческое VHDL описание схемы преобразования четырехразрядного информационного кода D[0..3] в код активизации 7-сегментного индикатора LED[0..7] в соответствии с таблицей 4. Подключить устройство к библиотеке компонентов текущего проекта. Текст описания занести в отчет.

Разработка и отладка основного модуля проекта

Для реализации частей разработанного устройства и последующей их отладки необходимо создать файл ограничений, содержащий назначение контактов целевой микросхемы. Вариант назначения сигналам контактов микросхемы, расположенной на плате набора XC3S200, представлены в таблице 5.

Таблица 5 – Вариант назначения контактов микросхемы сигналам схемы

Сигнал	Номер контакта для набора XC3S200	Номер контакта для набора Nexys2 (XC3E-500)	Назначение
CLK	Т9	В8	Глобальный сигнал GCLK0(50 МГц)
COUNT	M13	H13	Сигнал от кнопки 3
RESET	L14	B18	Сигнал от кнопки 0
LED[0]	N16	H14	Сигнал управления сегментом G
LED[1]	F13	J17	Сигнал управления сегментом F
LED[2]	R16	G14	Сигнал управления сегментом Е
LED[3]	P15	D16	Сигнал управления сегментом D
LED[4]	N15	D17	Сигнал управления сегментом С
LED[5]	G13	F18	Сигнал управления сегментом В
LED[6]	E14	L18	Сигнал управления сегментом А
LED[7]	P16	C17	Сигнал управления сегментом DP
A[0]	D14	F17	Сигнал управления анодом 0
A[1]	G14	H17	Сигнал управления анодом 1
A[2]	F14	C18	Сигнал управления анодом 2
A[3]	E13	F15	Сигнал управления анодом 3

Задание 6. В редакторе схем САПР ISE WebPack 9.1. собрать модель полученного устройства, включающего схему подавления дребезга, схему управления 7-сегментными индикаторами, 16-разрядный счетчик и схему деления частоты для активизации 7-сегментных индикаторов (библиотечные элементы СВ16СЕ и ВUFGCE). Для использования описаний в составе описаний более высокого уровня необходимо создать для них символы, благодаря чему описания включается в библиотеку. Для этого следует

во вкладке Sources окна Sources выбрать описание проекта, после чего во вкладке Processes окна Processes выбрать ветвь Design Utilities и пункт Create Schematic Symbol.

Созданное описание следует указать в качестве модуля верхнего уровня, для чего необходимо выбрать его в дереве описаний проекта во вкладке Sources окна Sources, после чего в меню Sources выбрать пункт Set as Top Module. Схему основного модуля занести в отчет.

Задание 7. В программе Xilinx PACE создать файл ограничений *.ucf, в котором назначить внешние выводы сигналам разрабатываемого устройства в соответствии с таблицей 5. Для этого выбрать модуль верхнего уровня в дереве описаний проекта во вкладке Sources окна Sources, после чего во вкладке Processes окна Processes выбрать ветвь User Constraints и пункт Assign Package Pins. В окне редактора РАСЕ назначение контактов выполняется в поле LOC.

Задание 8. В САПР ISE WebPack 9.1 выполнить автоматический синтез технологической схемы, размещение и трассировку полученного устройства на кристалле Spartan3 XC3S200 ft256 (или для Spartan 3E-500 FG320), генерировать файл конфигурации ПЛИС (*.bin). Для этого в окне Sources выбрать вкладку Sources и в списке Sources For выбрать строку Synthesis/Implementation. После этого в дереве описаний проекта выбрать описание верхнего уровня, а во вкладке Processes окна Processes выбрать ветвь Generate Programming File и пункт Programming File Generation Report.

Занести в отчет общие сведения о результатах проектирования устройства с вкладки Design Summary. Сделать выводы о быстродействии полученного устройства, используя отчет Static Timing Report.

Задание 8. Выполнить программирование макетной ПЛИС Spartan3 отладочного набора XC3S200 или Nexys2. Для этого в окне Sources выбрать вкладку Sources и в списке Sources For выбрать строку Synthesis/Implementation. После этого в дереве описаний проекта выбрать описание верхнего уровня, а во вкладке Processes окна Processes выбрать ветвь Generate Programming File и пункт Configure Device. В результате будет запущен модуль iMPACT. В открывшемся диалоге выбора способа программирования отметить пункт Configure devices using Boundary-Scan и выбрать автоматический способ идентификации. В результате будет определена цепочка, состоящая из ПЛИС и Flash ПЗУ.

После автоматического определения цепочки граничного сканирования по JTAG интерфейсу необходимо запрограммировать ПЛИС XC3S200 (или Spartan 3E-500 FG320). Для этого необходимо указать файл конфигурации ПЛИС (*.bit), полученный в задании 7, после чего в окне iMPACT Processes меню выбрать пункт Program.

Провести тестирование разработанного устройства. Результаты тестирование представить в отчете.

Контрольные вопросы

- 1. Назовите основные этапы проектирования цифровых устройств на основе ПЛИС.
- 2. Какой тип автомата (Мили или Мура) реализован в устройстве подавления дребезга.
- 3. Перечислите устройства, входящие в состав отладочного набора XC3S200 или Nexys2.
- 4. Какую информацию содержит файл ограничений *.ucf.
- 5. Какой стиль описания на VHDL использован в примере описания драйвера 7сегментных индикаторов.

Требования к отчету

Отчет должен содержать:

- 6. ФИО студента, номер группы, номер варианта, номер и название лабораторной работы.
- 7. Функциональную схему разрабатываемого устройства
- 8. Диаграмма состояния автомата подавления дребезга
- 9. Заполненные в соответствии с индивидуальным заданием таблицы 2 и 3.
- 10. Карты Карно и результаты минимизации функций сигналов CNT, CNT_EN, CNT CLR,D1,D0.
- 11. Схему автомата подавления дребезга (скриншот модуля).
- 12. Результаты верификации схемы в ПО Modelsim.
- 13. VHDL код модуля управления семисегментным индикатором
- 14. Схему модуля верхнего уровня проекта (скриншот модуля).
- 15. Результаты верификации проекта на отладочной плате.

Список литературы

1. Попов А.Ю. Проектирование цифровых устройств с использованием ПЛИС: Учеб. пособие. — М.: Изд-во МГТУ им. Н.Э. Баумана, 2009.

- 2. Угрюмов Е. П. Цифровая схемотехника: Учеб. Пособие для вузов. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2004. 800 с.: ил.
- 3. Грушвицкий Р. И., Мурсаев А. Х., Угрюмов Е. П. Проектирование систем на микросхемах с программируемой структурой, БХВ-Петербург, 2006, 708 с.
- 4. Spartan-3 FPGA Family: Complete Data Sheet. Xilinx Inc.
- 5. Xilinx ISE Guide (HTML Book). Xilinx Inc.
- 6. Xilinx ISE 9 Software Manuals
- 7. Spartan-3 Starter Kit Board User Guide (www.digilentinc.com)
- 8. Nexys 2 Board User Guide (www.digilentinc.com)
- 9. В. Зотов Инструментальный комплект Spartan3 Starter Kit